Pregunta
upstudy study bank question image url

Find an equation of the line passing through the pair of points. \[ (4,-1),(-16,14) \] Sketch the line.

Ask by Barnett Erickson. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The equation of the line passing through the points \((4, -1)\) and \((-16, 14)\) is: \[ y = -\frac{3}{4}x + 2 \] To sketch the line, plot the points \((4, -1)\) and \((-16, 14)\) and draw a straight line through them.

Solución

To find the equation of the line passing through the points \((4, -1)\) and \((-16, 14)\), we will follow these steps: 1. **Calculate the slope (m)** of the line using the formula: \[ m = \frac{y_2 - y_1}{x_2 - x_1} \] where \((x_1, y_1) = (4, -1)\) and \((x_2, y_2) = (-16, 14)\). 2. **Use the point-slope form** of the equation of a line: \[ y - y_1 = m(x - x_1) \] We can use either of the two points for \((x_1, y_1)\). 3. **Convert the equation to slope-intercept form** \(y = mx + b\) if necessary. Let's start with the calculations. ### Step 1: Calculate the slope (m) Using the points: - \(x_1 = 4\), \(y_1 = -1\) - \(x_2 = -16\), \(y_2 = 14\) Calculating the slope: \[ m = \frac{14 - (-1)}{-16 - 4} = \frac{14 + 1}{-16 - 4} = \frac{15}{-20} = -\frac{3}{4} \] ### Step 2: Use the point-slope form Using the point \((4, -1)\): \[ y - (-1) = -\frac{3}{4}(x - 4) \] This simplifies to: \[ y + 1 = -\frac{3}{4}(x - 4) \] ### Step 3: Convert to slope-intercept form Distributing the slope: \[ y + 1 = -\frac{3}{4}x + 3 \] Subtracting 1 from both sides: \[ y = -\frac{3}{4}x + 2 \] Now we have the equation of the line: \[ y = -\frac{3}{4}x + 2 \] ### Sketching the Line To sketch the line, we can plot the two points \((4, -1)\) and \((-16, 14)\) and draw a line through them. Let's summarize the results and sketch the line. 1. **Equation of the line**: \[ y = -\frac{3}{4}x + 2 \] 2. **Points to plot**: - \((4, -1)\) - \((-16, 14)\) Now, I will sketch the line based on these points. ### Sketching the Line The line will have a negative slope, indicating it will go downwards from left to right. The y-intercept is at \(2\) (where the line crosses the y-axis). Let's proceed to sketch the line. (Note: As a text-based AI, I cannot create visual sketches directly, but you can plot the points and draw the line on graph paper or using graphing software.)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the equation of the line passing through the points \( (4, -1) \) and \( (-16, 14) \), we first need to calculate the slope (m) using the formula: \[ m = \frac{y_2 - y_1}{x_2 - x_1} \] Plugging in our points: \[ m = \frac{14 - (-1)}{-16 - 4} = \frac{14 + 1}{-20} = \frac{15}{-20} = -\frac{3}{4} \] Next, we can use the point-slope form of the line's equation, \( y - y_1 = m(x - x_1) \). Using point \( (4, -1) \): \[ y - (-1) = -\frac{3}{4}(x - 4) \] This simplifies to: \[ y + 1 = -\frac{3}{4}x + 3 \] \[ y = -\frac{3}{4}x + 2 \] Thus, the equation of the line in slope-intercept form is: \[ y = -\frac{3}{4}x + 2 \] Now, sketching the line, you would plot the points \( (4, -1) \) and \( (-16, 14) \), and then draw a straight line through them. Remember to mark the y-intercept at \( (0, 2) \) for clarity! The graph will show a downward slope, reflecting the negative slope value. Enjoy your sketch! - **Historical Note**: The study of linear equations dates back to ancient civilizations, including the Babylonians and Greeks. They were among the first to study and solve equations resembling what we use today. Their legacy shapes modern algebra, making it easier to describe relationships in nearly every field, from physics to economics! - **Real-World Application**: Linear equations like this one are everywhere in our everyday lives! For example, when budgeting, you can represent your expenses and income with a line, helping you visualize your financial health. Understanding lines and slopes can also help in designing products or structures that need to meet specific criteria, such as maintaining slants or angles for stability.

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad