Pregunta
upstudy study bank question image url

Question Find the relative error when using the midpoint rule to calculate \( \int_{0}^{2}\left(3 x^{2}+2\right) d x \) using 4 subintervals. Find the relative error as a percent rounded to the nearest hundredth if necessary. Do not round until your final answer and do not inclu the symbol "\%" in your answer.

Ask by Mills Ingram. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The relative error is 1.04%.

Solución

To find the relative error when using the midpoint rule to calculate the integral \( \int_{0}^{2}\left(3 x^{2}+2\right) d x \) using 4 subintervals, we will follow these steps: 1. **Calculate the exact value of the integral.** 2. **Apply the midpoint rule to estimate the integral.** 3. **Calculate the relative error.** ### Step 1: Calculate the Exact Value of the Integral The exact value of the integral can be calculated as follows: \[ \int_{0}^{2} (3x^2 + 2) \, dx \] First, we find the antiderivative: \[ F(x) = x^3 + 2x \] Now, we evaluate it from 0 to 2: \[ F(2) - F(0) = (2^3 + 2 \cdot 2) - (0^3 + 2 \cdot 0) = (8 + 4) - 0 = 12 \] So, the exact value of the integral is \( 12 \). ### Step 2: Apply the Midpoint Rule We will divide the interval \([0, 2]\) into 4 subintervals. The width of each subinterval \( \Delta x \) is: \[ \Delta x = \frac{b - a}{n} = \frac{2 - 0}{4} = 0.5 \] The midpoints of each subinterval are: - For the first subinterval \([0, 0.5]\): midpoint \( x_1 = 0.25 \) - For the second subinterval \([0.5, 1]\): midpoint \( x_2 = 0.75 \) - For the third subinterval \([1, 1.5]\): midpoint \( x_3 = 1.25 \) - For the fourth subinterval \([1.5, 2]\): midpoint \( x_4 = 1.75 \) Now we evaluate the function at each midpoint: \[ f(0.25) = 3(0.25)^2 + 2 = 3(0.0625) + 2 = 0.1875 + 2 = 2.1875 \] \[ f(0.75) = 3(0.75)^2 + 2 = 3(0.5625) + 2 = 1.6875 + 2 = 3.6875 \] \[ f(1.25) = 3(1.25)^2 + 2 = 3(1.5625) + 2 = 4.6875 + 2 = 6.6875 \] \[ f(1.75) = 3(1.75)^2 + 2 = 3(3.0625) + 2 = 9.1875 + 2 = 11.1875 \] Now we apply the midpoint rule: \[ \text{Midpoint Rule Estimate} = \Delta x \left( f(x_1) + f(x_2) + f(x_3) + f(x_4) \right) \] \[ = 0.5 \left( 2.1875 + 3.6875 + 6.6875 + 11.1875 \right) \] \[ = 0.5 \left( 23.75 \right) = 11.875 \] ### Step 3: Calculate the Relative Error The relative error is given by: \[ \text{Relative Error} = \left| \frac{\text{Exact Value} - \text{Estimate}}{\text{Exact Value}} \right| \] Substituting the values we found: \[ \text{Relative Error} = \left| \frac{12 - 11.875}{12} \right| = \left| \frac{0.125}{12} \right| = \frac{0.125}{12} \approx 0.01041667 \] To express this as a percentage, we multiply by 100: \[ \text{Relative Error as a percent} = 0.01041667 \times 100 \approx 1.04166667 \] Rounding to the nearest hundredth: \[ \text{Final Answer} = 1.04 \] Thus, the relative error as a percent rounded to the nearest hundredth is \( 1.04 \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the relative error when using the midpoint rule for the integral \(\int_{0}^{2}\left(3 x^{2}+2\right) d x\) with 4 subintervals, first calculate the exact value of the integral. The integral computes as follows: \[ \int_{0}^{2}\left(3 x^{2}+2\right) d x = \left[ x^3 + 2x \right]_{0}^{2} = (2^3 + 2 \times 2) - (0 + 0) = 8 + 4 = 12. \] Now, using the midpoint rule with 4 subintervals (each of length \(\Delta x = \frac{2-0}{4} = 0.5\)), the midpoints \(x_i\) for each subinterval are \(0.25\), \(0.75\), \(1.25\), and \(1.75\). Now evaluate the function at each of these midpoints: \[ f(0.25) = 3(0.25)^2 + 2 = 3(0.0625) + 2 = 2.1875, \] \[ f(0.75) = 3(0.75)^2 + 2 = 3(0.5625) + 2 = 3.6875, \] \[ f(1.25) = 3(1.25)^2 + 2 = 3(1.5625) + 2 = 6.6875, \] \[ f(1.75) = 3(1.75)^2 + 2 = 3(3.0625) + 2 = 11.1875. \] Now, calculate the approximate integral using the midpoint rule: \[ M \approx \Delta x \left( f(0.25) + f(0.75) + f(1.25) + f(1.75) \right) = 0.5 \left( 2.1875 + 3.6875 + 6.6875 + 11.1875 \right). \] Calculating the sum: \[ M \approx 0.5 \times 23.75 = 11.875. \] Now, we find the absolute error: \[ \text{Absolute Error} = | \text{Exact Value} - \text{Approximate Value} | = | 12 - 11.875 | = 0.125. \] Next, calculate the relative error: \[ \text{Relative Error} = \frac{\text{Absolute Error}}{\text{Exact Value}} = \frac{0.125}{12} \approx 0.01041666667. \] Finally, convert the relative error to a percent: \[ \text{Relative Error as a Percent} = 0.01041666667 \times 100 \approx 1.041666667. \] Rounding to the nearest hundredth: **1.04**

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad