Pregunta
upstudy study bank question image url

Solve each inequality. Then graph the solution on a number line. \( \begin{array}{ll}\text { 16. }-3(7 n+3)<6 n & \text { 17. } 21 \geq 3(a-7)+9 \\ \text { 18. } 2 y+4>2(3+y) & \text { 19. } 3(2-b)<10-3(b-6) \\ \text { 20. } 7+t \leq 2(t+3)+2 & \text { 21. } 8 a+2(1-5 a) \leq 20\end{array} \)

Ask by Kelly Schwartz. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Solutions and Graphs for Each Inequality: 1. **16.** - **Solution:** \( n > -\frac{1}{3} \) - **Graph:** Open circle at \(-\frac{1}{3}\); shade to the right. 2. **17.** - **Solution:** \( a \leq 11 \) - **Graph:** Closed circle at 11; shade to the left. 3. **18.** - **Solution:** No solution - **Graph:** No shading. 4. **19.** - **Solution:** All real numbers (\( -\infty, \infty \)) - **Graph:** Entire number line shaded. 5. **20.** - **Solution:** \( t \geq -1 \) - **Graph:** Closed circle at \(-1\); shade to the right. 6. **21.** - **Solution:** \( a \geq -9 \) - **Graph:** Closed circle at \(-9\); shade to the right. Each inequality has been solved, and the corresponding number line graphs are provided.

Solución

We will solve each inequality step‐by‐step and then describe how to graph the solution on a number line. ───────────────────────────── 16. –3(7n + 3) < 6n 1. Distribute –3:   –21n – 9 < 6n 2. Add 21n to both sides:   –9 < 27n 3. Divide both sides by 27 (positive so the inequality sign remains the same):   n > –9/27 4. Simplify:   n > –1/3 Graph: On a number line, put an open circle at –1/3 and shade everything to the right.   Solution: n > –1/3 ───────────────────────────── 17. 21 ≥ 3(a – 7) + 9 1. Distribute 3:   21 ≥ 3a – 21 + 9 2. Combine like terms on the right:   21 ≥ 3a – 12 3. Add 12 to both sides:   33 ≥ 3a  or  3a ≤ 33 4. Divide both sides by 3:   a ≤ 11 Graph: On a number line, place a closed circle at 11 and shade everything to the left.   Solution: a ≤ 11 ───────────────────────────── 18. 2y + 4 > 2(3 + y) 1. Distribute 2 on the right:   2y + 4 > 6 + 2y 2. Subtract 2y from both sides:   4 > 6 This inequality is false (4 is never greater than 6) regardless of y. Graph: The number line will have no solution shaded.   Solution: No solution (empty set) ───────────────────────────── 19. 3(2 – b) < 10 – 3(b – 6) 1. Distribute on the left:   6 – 3b < 10 – 3(b – 6) 2. Expand the right side:   6 – 3b < 10 – 3b + 18 3. Simplify the right side:   6 – 3b < 28 – 3b 4. Add 3b to both sides:   6 < 28 Since 6 < 28 is always true, the inequality holds for every value of b. Graph: The entire real number line is shaded.   Solution: All real numbers (-∞, ∞) ───────────────────────────── 20. 7 + t ≤ 2(t + 3) + 2 1. Expand the right side:   7 + t ≤ 2t + 6 + 2 2. Simplify the right side:   7 + t ≤ 2t + 8 3. Subtract t from both sides:   7 ≤ t + 8 4. Subtract 8 from both sides:   -1 ≤ t  or  t ≥ -1 Graph: Place a closed circle at -1 and shade to the right.   Solution: t ≥ -1 ───────────────────────────── 21. 8a + 2(1 – 5a) ≤ 20 1. Distribute 2:   8a + 2 – 10a ≤ 20 2. Combine like terms:   -2a + 2 ≤ 20 3. Subtract 2 from both sides:   -2a ≤ 18 4. Divide both sides by –2 (note: reverse the inequality sign when dividing by a negative):   a ≥ -9 Graph: Place a closed circle at -9 and shade to the right.   Solution: a ≥ -9 ───────────────────────────── Summary of Solutions and Graph Descriptions: 16. n > –1/3   Graph: open circle at –1/3; shade to the right. 17. a ≤ 11   Graph: closed circle at 11; shade to the left. 18. No solution   Graph: no points shaded. 19. All real numbers (-∞, ∞)   Graph: entire number line shaded. 20. t ≥ -1   Graph: closed circle at -1; shade to the right. 21. a ≥ -9   Graph: closed circle at -9; shade to the right. Each solution is now solved and the graphing instructions provided as described above.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

Let's solve each inequality step-by-step and then graph the solutions on a number line. ### 16. \(-3(7n + 3) < 6n\) Start by distributing: \[ -21n - 9 < 6n \] Next, add \(21n\) to both sides: \[ -9 < 6n + 21n \] Combine like terms: \[ -9 < 27n \] Now divide by \(27\): \[ -\frac{1}{3} < n \quad \text{or} \quad n > -\frac{1}{3} \] **Graph:** A number line with an open circle at \(-\frac{1}{3}\) and an arrow extending to the right. --- ### 17. \(21 \geq 3(a - 7) + 9\) Distribute on the right: \[ 21 \geq 3a - 21 + 9 \] Combine like terms: \[ 21 \geq 3a - 12 \] Add \(12\) to both sides: \[ 33 \geq 3a \] Then divide by \(3\): \[ 11 \geq a \quad \text{or} \quad a \leq 11 \] **Graph:** A number line with an open circle at \(11\) and an arrow extending to the left. --- ### 18. \(2y + 4 > 2(3 + y)\) Distributing the \(2\): \[ 2y + 4 > 6 + 2y \] Subtract \(2y\) from both sides: \[ 4 > 6 \quad \text{(This is false)} \] Thus, there is no solution. **Graph:** An empty number line since no values satisfy the inequality. --- ### 19. \(3(2 - b) < 10 - 3(b - 6)\) Start by distributing: \[ 6 - 3b < 10 - 3b + 18 \] Combine like terms on the right: \[ 6 - 3b < 28 - 3b \] Add \(3b\) to both sides: \[ 6 < 28 \] This is always true so all \(b\) satisfy this condition. **Graph:** A number line with shading for all values of \(b\). --- ### 20. \(7 + t \leq 2(t + 3) + 2\) Distribute on the right: \[ 7 + t \leq 2t + 6 + 2 \] Combine like terms: \[ 7 + t \leq 2t + 8 \] Subtract \(t\) from both sides: \[ 7 \leq t + 8 \] Subtract \(8\) from both sides: \[ -1 \leq t \quad \text{or} \quad t \geq -1 \] **Graph:** A number line with an open circle at \(-1\) and an arrow extending to the right. --- ### 21. \(8a + 2(1 - 5a) \leq 20\) Distributing on the left: \[ 8a + 2 - 10a \leq 20 \] Combine like terms: \[ -2a + 2 \leq 20 \] Subtract \(2\) from both sides: \[ -2a \leq 18 \] Dividing by \(-2\) flips the inequality: \[ a \geq -9 \] **Graph:** A number line with an open circle at \(-9\) and an arrow extending to the right. Now you have your solutions neatly organized; get ready to graph those results!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad