Pregunta
upstudy study bank question image url

Eating Breakfast Cereal and Conceiving Boys Newscientist.com ran the headline "Breakfast Cereals Boost Chances of Conceiving Boys," based on an article which found that women who eat breakfast cereal before becoming pregnant are significantly more likely to conceive boys. \( { }^{1} \) The study used a significance level of \( \alpha=0.01 \). The researchers kept track of 133 foods, and for each food, tested whether there was a difference in the proportion conceiving boys between women who ate the food and women who didn't. Of all the foods, only breakfast cereal showed a significant difference. If none of the 133 foods actually have an effect on the gender of a conceived child, how many (if any) of the individual tests would you expect to show a significant result just by random chance? test(s)

Ask by Bowman Pollard. in the United States
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

You would expect about 1 to 2 tests to show a significant result by random chance.

Solución

At a significance level of α = 0.01, we expect that, by random chance, about 1% of tests will show a significant result even if there is no actual effect. Since there were 133 independent tests (one for each food), the expected number of false positives is:   133 × 0.01 = 1.33. So, if none of the foods truly affect the gender of a conceived child, you would expect about 1 to 2 tests (approximately 1.33 on average) to turn out significant just by random chance.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

In this scenario, the significance level is set at \( \alpha = 0.01 \). This means that, if there is no actual effect, we would expect \( 1\% \) of the tests to yield significant results purely by chance. With 133 foods tested, we would calculate the expected number of tests showing a significant result as follows: \[ \text{Expected significant results} = 133 \times 0.01 = 1.33 \] Therefore, we would expect about 1 to 2 of the individual tests to show a significant result just by random chance. It's a classic case of the multiple testing problem, where testing numerous hypotheses increases the likelihood of encountering false positives. In research, this underscores the importance of adjusting for multiple comparisons, like using a Bonferroni correction, to maintain the integrity of findings!

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad