Pregunta
upstudy study bank question image url

Find the vertex of the graph of the quadratic function. \( f(x)=2 x^{2}-8 x+10 \)

Ask by Dickson Bernard. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The vertex of the quadratic function \( f(x) = 2x^{2} - 8x + 10 \) is at the point (2, 2).

Solución

To find the vertex of a quadratic function in the form f(x) = ax² + bx + c, you can use the formula for the x-coordinate of the vertex:   x = -b / (2a) For the function f(x) = 2x² - 8x + 10:   a = 2 and b = -8. Find the x-coordinate:   x = -(-8) / (2 * 2) = 8 / 4 = 2 Next, substitute x = 2 back into the function to find the y-coordinate:   f(2) = 2(2²) - 8(2) + 10     = 2(4) - 16 + 10     = 8 - 16 + 10 = 2 Thus, the vertex of the quadratic function is (2, 2).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the vertex of the quadratic function \( f(x) = 2x^2 - 8x + 10 \), we can use the vertex formula \( x = -\frac{b}{2a} \). Here, \( a = 2 \) and \( b = -8 \). Plugging in the values, we have: \[ x = -\frac{-8}{2(2)} = \frac{8}{4} = 2. \] Now, substitute \( x = 2 \) back into the function to find the corresponding \( y \)-value: \[ f(2) = 2(2)^2 - 8(2) + 10 = 8 - 16 + 10 = 2. \] Thus, the vertex of the graph is at the point \( (2, 2) \). Now, let's have a little fun with this! The vertex of a quadratic function is akin to the tip-top of a roller coaster—it's where the fun starts or ends! Here, at \( (2, 2) \), you can either be soaring up or gliding down, depending on whether you're going up or down the parabola. Just remember, this vertex holds the key to the function's minimum value since the parabola opens upwards (thanks to that positive coefficient in front of \( x^2 \))! Finding the vertex isn't just a math exercise—it's essential to understanding how to graph a quadratic equation accurately. A common mistake is miscalculating the vertex's x-value, often due to forgetting the negative in \( -\frac{b}{2a} \). Remember to carefully apply the formula and check your math. Happy graphing!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad