Simplify by removing factors of 1 . \( \frac{12 z-8}{32} \) The simplified form is \( \square \).
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
To simplify the expression \( \frac{12 z-8}{32} \), we start by factoring out the greatest common factor from the numerator. The terms in the numerator, \(12z\) and \(-8\), can be factored as follows: \(12z - 8 = 4(3z - 2)\) Now we can rewrite the expression as: \[ \frac{4(3z - 2)}{32} \] Next, we simplify the denominator \(32\) as \(4 \times 8\): \[ \frac{4(3z - 2)}{4 \times 8} \] Now we can cancel the common factor of \(4\) in the numerator and the denominator: \[ \frac{(3z - 2)}{8} \] Thus, the simplified form is: \[ \frac{3z - 2}{8} \text{ or } (3z - 2) \div 8 \] So, the answer is \( \frac{3z - 2}{8} \).
