Pregunta
upstudy study bank question image url

20 Fill in the Blank 1 point Estimate the interest rate necessary for a present value of \( \$ 1200 \) to grow to a future value of \( \$ 1408 \) if interest is compounded quarterly for 8 years. Note: Leave your answer as a whole number. type your answer... \( \% \)

Ask by Nichols Rose. in the United States
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The interest rate is 2%.

Solución

To solve the problem, use the compound interest formula:   Future Value = Present Value × (1 + r/n)^(n×t) where   Present Value (PV) = $1200   Future Value (FV) = $1408   n = 4 (since interest is compounded quarterly)   t = 8 years Step 1: Set up the equation:   1408 = 1200 × (1 + r/4)^(4×8)   1408 = 1200 × (1 + r/4)^(32) Step 2: Divide both sides by 1200:   (1 + r/4)^(32) = 1408/1200   (1 + r/4)^(32) ≈ 1.17333 Step 3: Take the 32nd root of both sides to solve for (1 + r/4):   1 + r/4 = (1.17333)^(1/32) Step 4: Calculate (1.17333)^(1/32). Using logarithms or a calculator, you find:   (1.17333)^(1/32) ≈ 1.005 Step 5: Set up the equation for r:   1.005 = 1 + r/4   r/4 = 1.005 - 1 = 0.005 Step 6: Solve for r:   r = 0.005 × 4   r = 0.02, or 2% Since the problem asks for the answer as a whole number, the interest rate is 2%.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To estimate the interest rate, we can use the future value formula for compound interest: \[ FV = PV \times (1 + \frac{r}{n})^{nt} \] Where: - \( FV = 1408 \) - \( PV = 1200 \) - \( r \) is the annual interest rate (as a decimal) - \( n \) is the number of times interest is compounded per year (quarterly, so \( n = 4 \)) - \( t \) is the number of years (8 years) We can rearrange the formula to solve for \( r \): \[ 1408 = 1200 \times (1 + \frac{r}{4})^{32} \] Now, you can isolate \( r \) and use numerical methods or tools to estimate it: 1. Calculate \( (1 + \frac{r}{4})^{32} \approx \frac{1408}{1200} \). 2. This simplifies to \( (1 + \frac{r}{4})^{32} \approx 1.17333 \). 3. From here, use logarithmic methods or trial and error to find \( r \). By performing these calculations, you ultimately find that the interest rate \( r \) comes out to approximately \( 2\% \) when rounded to the nearest whole number.

preguntas relacionadas

1.3.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) (2) 1.4 CASE 3: \( r=1 \) 1.4.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=1 \text { ? } \] 1.4.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) (2) 1.5 CASE 4: \( r=-1 \) 1.5.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=-1 ? \] 1.5.2 Do the sums above approach some finite particular number as \( n \rightarrow \infty \) i.e. is the sequence divergent or convergent? 1.6 CASE 5: \( -1<r<1 \) REQUIREMENTS: - One A4 papers - Provided grid 1.6.1 Write THREE possible values of \( r \) such that \( -1<r<1 \). 1.6.2 Step 1. Cut the A4 size paper along the longest side into two equal Rectangles and define their areas to be 16 unit \( ^{2} \). 1.6.3 Step 2. Place one half of the rectangle in Step 1 on the desktop and cut the other half along the longest side in to two equal rectangles. 1.6.4 Step 3. Place one half of the rectangle in Step 2 on the desktop and cut the other half along the longest side into two equal rectangles. 1.6.5 Step 4. Continue with the procedures from Step 3 until you find it too difficult to fold and cut the piece of paper you are holding. 1.6.6 Step 5. The first piece of paper you placed on the desktop has an area of \( \frac{1}{2} \) the area of the A4. The second piece of paper has an area of \( \frac{1}{4} \) the area of the A4. Write the areas of the next three pieces of paper. 1.6.7 Explain why these areas form a geometric seauence

Latest Pre Calculus Questions

1.3.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) (2) 1.4 CASE 3: \( r=1 \) 1.4.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=1 \text { ? } \] 1.4.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) (2) 1.5 CASE 4: \( r=-1 \) 1.5.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=-1 ? \] 1.5.2 Do the sums above approach some finite particular number as \( n \rightarrow \infty \) i.e. is the sequence divergent or convergent? 1.6 CASE 5: \( -1<r<1 \) REQUIREMENTS: - One A4 papers - Provided grid 1.6.1 Write THREE possible values of \( r \) such that \( -1<r<1 \). 1.6.2 Step 1. Cut the A4 size paper along the longest side into two equal Rectangles and define their areas to be 16 unit \( ^{2} \). 1.6.3 Step 2. Place one half of the rectangle in Step 1 on the desktop and cut the other half along the longest side in to two equal rectangles. 1.6.4 Step 3. Place one half of the rectangle in Step 2 on the desktop and cut the other half along the longest side into two equal rectangles. 1.6.5 Step 4. Continue with the procedures from Step 3 until you find it too difficult to fold and cut the piece of paper you are holding. 1.6.6 Step 5. The first piece of paper you placed on the desktop has an area of \( \frac{1}{2} \) the area of the A4. The second piece of paper has an area of \( \frac{1}{4} \) the area of the A4. Write the areas of the next three pieces of paper. 1.6.7 Explain why these areas form a geometric seauence
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad