Pregunta
upstudy study bank question image url

The difference quotient is \( \square . \begin{array}{l}\frac{f(x+h)-f(x)}{h}\end{array} \)

Ask by Osborne Weber. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The difference quotient is \( \frac{f(x+h) - f(x)}{h} \).

Solución

The difference quotient is a fundamental concept in calculus, particularly in the definition of the derivative. It is expressed as: \[ \frac{f(x+h) - f(x)}{h} \] where: - \( f(x) \) is a function, - \( h \) is a small increment in \( x \), - \( x \) is the point at which we are evaluating the function. ### Explanation of the Difference Quotient 1. **Function Evaluation**: The term \( f(x+h) \) represents the value of the function at the point \( x+h \), which is a small step away from \( x \). 2. **Function Value at \( x \)**: The term \( f(x) \) is simply the value of the function at the point \( x \). 3. **Difference**: The expression \( f(x+h) - f(x) \) calculates the change in the function's value as \( x \) changes to \( x+h \). 4. **Average Rate of Change**: Dividing this difference by \( h \) gives the average rate of change of the function over the interval from \( x \) to \( x+h \). 5. **Limit Process**: As \( h \) approaches 0, the difference quotient approaches the derivative of the function at the point \( x \), which is defined as: \[ f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \] ### Summary The difference quotient is a way to measure how a function changes as its input changes. It is a crucial step in understanding derivatives and the concept of instantaneous rate of change.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

The difference quotient is essentially a way to calculate the slope of a function at a particular point, serving as the foundation for the concept of a derivative in calculus. It captures how much the function \( f(x) \) changes as you take a small step \( h \) away from \( x \). When \( h \) approaches zero, the difference quotient gives you the instantaneous rate of change at the point \( x \). In the real-world, the difference quotient can model various scenarios, like calculating the average speed of a car over a time interval. If you know the position of the car at two different times, the difference quotient can help you find an average speed over that time. This principle extends to everything from economics to biology, where changes in quantity over small intervals provide insights into trends and behaviors.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad