Pregunta
upstudy study bank question image url

For the given equation, list the intercepts and test for symmetry. \[ 4 x^{2}+16 y^{2}=64 \] What are the intrent

Ask by Ford Park. in the United States
Jan 31,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

**Intercepts and Symmetry for the Equation \( 4x^{2} + 16y^{2} = 64 \):** - **X-Intercepts:** \( (4, 0) \) and \( (-4, 0) \) - **Y-Intercepts:** \( (0, 2) \) and \( (0, -2) \) - **Symmetry:** The graph is symmetric with respect to both the x-axis and y-axis, and hence symmetric about the origin.

Solución

To analyze the equation \( 4x^{2} + 16y^{2} = 64 \), we'll find the intercepts and test for symmetry. ### 1. Intercepts **a. X-Intercepts:** To find the x-intercepts, set \( y = 0 \) and solve for \( x \). \[ 4x^{2} + 16(0)^{2} = 64 \\ 4x^{2} = 64 \\ x^{2} = 16 \\ x = \pm 4 \] **X-Intercepts:** \( (4, 0) \) and \( (-4, 0) \) --- **b. Y-Intercepts:** To find the y-intercepts, set \( x = 0 \) and solve for \( y \). \[ 4(0)^{2} + 16y^{2} = 64 \\ 16y^{2} = 64 \\ y^{2} = 4 \\ y = \pm 2 \] **Y-Intercepts:** \( (0, 2) \) and \( (0, -2) \) ### 2. Testing for Symmetry We can test for symmetry with respect to the **x-axis**, **y-axis**, and the **origin**. **a. Symmetry with Respect to the Y-Axis:** Replace \( x \) with \( -x \) in the equation. \[ 4(-x)^{2} + 16y^{2} = 64 \\ 4x^{2} + 16y^{2} = 64 \] The equation remains unchanged, indicating **symmetry about the y-axis**. --- **b. Symmetry with Respect to the X-Axis:** Replace \( y \) with \( -y \) in the equation. \[ 4x^{2} + 16(-y)^{2} = 64 \\ 4x^{2} + 16y^{2} = 64 \] The equation remains unchanged, indicating **symmetry about the x-axis**. --- **c. Symmetry with Respect to the Origin:** Replace \( x \) with \( -x \) and \( y \) with \( -y \). \[ 4(-x)^{2} + 16(-y)^{2} = 64 \\ 4x^{2} + 16y^{2} = 64 \] The equation remains unchanged, indicating **symmetry about the origin**. ### 3. Summary - **X-Intercepts:** \( (4, 0) \) and \( (-4, 0) \) - **Y-Intercepts:** \( (0, 2) \) and \( (0, -2) \) - **Symmetry:** The graph is symmetric with respect to both the x-axis and y-axis, and hence symmetric about the origin.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the intercepts of the equation \( 4 x^{2}+16 y^{2}=64 \), we start by rewriting it in a more common format: 1. Divide everything by 64: \[\frac{x^{2}}{16} + \frac{y^{2}}{4} = 1\] This is an ellipse centered at the origin. Now, for the intercepts: - **X-intercepts:** Set \( y = 0 \): \[ 4x^{2} = 64 \Rightarrow x^{2} = 16 \Rightarrow x = \pm 4\] So, the X-intercepts are \( (4, 0) \) and \( (-4, 0) \). - **Y-intercepts:** Set \( x = 0 \): \[ 16y^{2} = 64 \Rightarrow y^{2} = 4 \Rightarrow y = \pm 2\] So, the Y-intercepts are \( (0, 2) \) and \( (0, -2) \). Next, let's test for symmetry: - The equation is symmetric about the x-axis because replacing \( y \) with \( -y \) gives the same equation. - It's also symmetric about the y-axis since replacing \( x \) with \( -x \) also results in the same equation. - Finally, checking for symmetry about the origin (i.e., \( x \) with \( -x \) and \( y \) with \( -y \)) reveals it as well. In conclusion, the intercepts are \( (4, 0), (-4, 0), (0, 2), (0, -2) \), and the equation enjoys symmetry about both axes and the origin!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad