Solve the system of equations by any method. \[ -x+2 y=-1 \] \[ 7-14 y=8 \] Enter the exact answer as an ordered pair, \( (x, y) \). If there is no solution, enter NS. If there is an infinite number of solutions an ordered pair in terms of \( x \). Include a multiplication sign between symbols. For example, \( a * x \). n
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Mind Expander
To solve the system of equations: 1. From the second equation \( 7 - 14y = 8 \), we can simplify it: \[ -14y = 8 - 7 \] \[ -14y = 1 \] Dividing both sides by -14 gives: \[ y = -\frac{1}{14} \] 2. Now, substitute \( y = -\frac{1}{14} \) into the first equation: \[ -x + 2\left(-\frac{1}{14}\right) = -1 \] This simplifies to: \[ -x - \frac{2}{14} = -1 \] \[ -x - \frac{1}{7} = -1 \] \[ -x = -1 + \frac{1}{7} \] Converting -1 to a fraction: \[ -1 = -\frac{7}{7} \] So, \[ -x = -\frac{7}{7} + \frac{1}{7} \] \[ -x = -\frac{6}{7} \] Thus, \[ x = \frac{6}{7} \] The solution can be expressed as the ordered pair \( (x, y) \): \( \left( \frac{6}{7}, -\frac{1}{14} \right) \)
