Solve the following equation for \( d \). Round value to 2 decimal places if needed. \( 500,000=\frac{d(19)}{\left(\frac{0.1}{12}\right)} \) \( d= \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Mind Expander
To solve for \( d \), we start by rearranging the equation: \[ 500,000 = \frac{d(19)}{\left(\frac{0.1}{12}\right)} \] First, simplify the denominator: \[ \frac{0.1}{12} = 0.0083333... \] Now, multiply both sides by \( \frac{0.1}{12} \): \[ 500,000 \times 0.0083333... = d(19) \] Calculating the left side: \[ 500,000 \times 0.0083333... = 4,166.66666... \] Now we can set it equal to \( d(19) \): \[ 4,166.66666... = d(19) \] To isolate \( d \), divide both sides by 19: \[ d = \frac{4,166.66666...}{19} \approx 219.8414... \] Rounding to two decimal places gives: \[ d \approx 219.84 \] So \( d \approx 219.84 \).
