Suppose demand is given by the equation \( Q=44-2 P \). Using the midpoint formula, what is the price elasticity of demand between the prices of 5 and 8 ? Include a negative sign if applicable, and round your answer to two decimal places.
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
To find the price elasticity of demand between the prices of 5 and 8 using the midpoint formula, we begin by calculating the quantity demanded at both prices. For \( P = 5 \): \[ Q = 44 - 2(5) = 44 - 10 = 34 \] For \( P = 8 \): \[ Q = 44 - 2(8) = 44 - 16 = 28 \] Now, we apply the midpoint formula for price elasticity of demand: \[ PE_d = \frac{\Delta Q / \text{Average } Q}{\Delta P / \text{Average } P} \] where \[ \Delta Q = Q_2 - Q_1 = 28 - 34 = -6 \] \[ \Delta P = P_2 - P_1 = 8 - 5 = 3 \] \[ \text{Average } Q = \frac{Q_1 + Q_2}{2} = \frac{34 + 28}{2} = 31 \] \[ \text{Average } P = \frac{P_1 + P_2}{2} = \frac{5 + 8}{2} = 6.5 \] Now, substituting these values into the formula: \[ PE_d = \frac{-6 / 31}{3 / 6.5} = \frac{-6}{31} \times \frac{6.5}{3} \] Calculating the right side: \[ PE_d = \frac{-6 \times 6.5}{31 \times 3} = \frac{-39}{93} \approx -0.419 \] Rounding to two decimal places, the price elasticity of demand is: \[ PE_d \approx -0.42 \]
