Pregunta
All the real zeros of the given polynomial are integers. Find the zeros. (Enter your answers as a comma-separated list. Enter all answers using the appropriate multiplicities.) \[ P(x)=x^{3}-2 x^{2}-13 x-10 \] Write the polynomial in factored form. \( P(x)=\square \)
Ask by Long Perkins. in the United States
Feb 27,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
Zeros: -2, -1, 5
P(x) = (x + 1)(x - 5)(x + 2)
Solución
To solve for the real zeros of
P(x) = x³ - 2x² - 13x - 10,
we first look for integer zeros among the divisors of -10, which are ±1, ±2, ±5, ±10.
Step 1. Test possible zeros:
P(-1) = (-1)³ - 2(-1)² - 13(-1) - 10
= -1 - 2 + 13 - 10
= 0.
So, x = -1 is a zero, meaning (x + 1) is a factor.
Step 2. Divide P(x) by (x + 1) using synthetic division:
Coefficients: 1, -2, -13, -10.
Carry down the 1.
Multiply: (-1) × 1 = -1; then add to -2 to get -3.
Multiply: (-1) × -3 = 3; then add to -13 to get -10.
Multiply: (-1) × -10 = 10; then add to -10 to get 0.
The quotient is x² - 3x - 10.
Step 3. Factor the quadratic:
x² - 3x - 10 factors as (x - 5)(x + 2) because (-5) + 2 = -3 and (-5) × 2 = -10.
Thus, the complete factorization of P(x) is:
P(x) = (x + 1)(x - 5)(x + 2).
The zeros of P(x) are x = -1, x = 5, and x = -2 (each with multiplicity 1).
Answer:
Zeros: -2, -1, 5
P(x) = (x + 1)(x - 5)(x + 2)
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Beyond the Answer
Let's find the integral zeros of the polynomial \( P(x) = x^3 - 2x^2 - 13x - 10 \) using the Rational Root Theorem. Testing integer values, we find that \( x = -1 \) is a root. Dividing the polynomial by \( (x + 1) \) using synthetic division gives us: \( P(x) = (x + 1)(x^2 - 3x - 10) \). Next, we can factor \( x^2 - 3x - 10 \) further, revealing the factors \( (x - 5)(x + 2) \). Thus, the complete factorization is: \( P(x) = (x + 1)(x - 5)(x + 2) \). The zeros, accounting for their multiplicities, are: \(-1, 5, -2\).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium