Pregunta
upstudy study bank question image url

Find the major vertices of the ellipse \( 5 x^{2}+3 y^{2}-15=0 \) A \( \quad(5,0) \) and \( (-5,0) \) B \( \quad(5,0) \) and \( (0,-5) \) C \( \quad(\sqrt{5}, 0) \) and \( (-\sqrt{5}, 0) \) D \( \quad(0, \sqrt{5}) \) and \( (0,-\sqrt{5}) \)

Ask by Parsons Ramos. in Malaysia
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The major vertices of the ellipse are \( (0, \sqrt{5}) \) and \( (0, -\sqrt{5}) \), which is option D.

Solución

First, rewrite the ellipse equation in standard form:   5x² + 3y² – 15 = 0   => 5x² + 3y² = 15   Divide both sides by 15:   (x²)/(15/5) + (y²)/(15/3) = 1   => (x²)/3 + (y²)/5 = 1 In the standard form (x²)/b² + (y²)/a² = 1 (when a² > b²), the major axis is along the y–axis. Here, a² = 5, so a = √5, and b² = 3. Thus, the vertices on the major axis are at:   (0, √5) and (0, –√5) This corresponds to option D.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the major vertices of the given ellipse, we first rewrite the equation \( 5x^2 + 3y^2 - 15 = 0 \) in standard form by isolating the constant: \[ 5x^2 + 3y^2 = 15 \] Dividing every term by 15 gives: \[ \frac{x^2}{3} + \frac{y^2}{5} = 1 \] This is the standard form of an ellipse with \( a^2 = 5 \) and \( b^2 = 3 \). Since \( a^2 > b^2 \), the major axis is along the y-axis. Thus, the vertices along the major axis are located at: \[ (0, \sqrt{5}) \quad \text{and} \quad (0, -\sqrt{5}) \] So, the major vertices of the ellipse are \( (0, \sqrt{5}) \) and \( (0, -\sqrt{5}) \). The correct answer is D. To have a deeper understanding, let's explore the significance of the semi-major and semi-minor axes and how they impact the geometry of ellipses. The distance \( a = \sqrt{5} \) represents the distance from the center at (0,0) along the y-axis, while \( b = \sqrt{3} \) represents the distance along the x-axis. This configuration creates a "stretched" appearance of the ellipse along the y-direction! Additionally, you might find it interesting how ellipses are not just confined to pure mathematics, but appear in physics as the paths of planets in motion. In fact, planets orbiting the sun follow elliptical trajectories according to Kepler’s laws! This connection between mathematics and cosmic phenomena highlights the beauty and applicability of mathematical concepts beyond the classroom.

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad