Pregunta
upstudy study bank question image url

Graph the parabola, \[ y=2 x^{2}+8 x+4 \] Plot five points on the parabolas the vertex, twe points to the left of the vertex, and two points to the right of the vert button.

Ask by Campos Bradley. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To graph the parabola \( y = 2x^{2} + 8x + 4 \), plot the following five points: 1. **Vertex**: (–2, –4) 2. **Left of Vertex**: (–3, –2) and (–4, 4) 3. **Right of Vertex**: (–1, –2) and (0, 4) Draw a smooth upward-opening curve through these points to complete the graph.

Solución

We want to graph the parabola given by   y = 2x² + 8x + 4. Step 1. Find the vertex. The x-coordinate of the vertex for a parabola in the form y = ax² + bx + c is given by x = –b⁄(2a). Here, a = 2 and b = 8, so   x = –8⁄(2×2) = –8⁄4 = –2. Now substitute x = –2 into the equation to find y:   y = 2(–2)² + 8(–2) + 4    = 2(4) – 16 + 4    = 8 – 16 + 4    = –4. So the vertex is (–2, –4). Step 2. Choose two points to the left of the vertex. It’s usually useful to pick x-values less than –2. • Let x = –3:   y = 2(–3)² + 8(–3) + 4    = 2(9) – 24 + 4    = 18 – 24 + 4    = –2.   So one point is (–3, –2). • Let x = –4:   y = 2(–4)² + 8(–4) + 4    = 2(16) – 32 + 4    = 32 – 32 + 4    = 4.   So another point is (–4, 4). Step 3. Choose two points to the right of the vertex. Pick x-values greater than –2. • Let x = –1:   y = 2(–1)² + 8(–1) + 4    = 2(1) – 8 + 4    = 2 – 8 + 4    = –2.   So one point is (–1, –2). • Let x = 0:   y = 2(0)² + 8(0) + 4    = 0 + 0 + 4    = 4.   So the other point is (0, 4). Step 4. List the five points:  • Vertex: (–2, –4)  • Left of vertex: (–3, –2) and (–4, 4)  • Right of vertex: (–1, –2) and (0, 4) Step 5. Graphing the Parabola. 1. Plot the vertex at (–2, –4). 2. Plot the two points to the left: (–3, –2) and (–4, 4). 3. Plot the two points to the right: (–1, –2) and (0, 4). 4. Draw a smooth curve through these points. Notice that the parabola is symmetric with respect to the vertical line x = –2. A rough sketch would look like this:          (–4,4)         (0,4)               /    \          (–3,–2)    (–1,–2)               |                   (–2,–4) Since the coefficient of x² is positive (a = 2 > 0), the parabola opens upward. With these points and steps, you now have a clear plot of the parabola y = 2x² + 8x + 4.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To graph the parabola given by the equation \( y = 2x^2 + 8x + 4 \), we can start by determining its vertex. The vertex can be found using the formula \( x = -\frac{b}{2a} \), where \( a = 2 \) and \( b = 8 \). Calculating the x-coordinate of the vertex: \[ x = -\frac{8}{2 \times 2} = -2 \] Now we can find the y-coordinate of the vertex by substituting \( x = -2 \) back into the equation: \[ y = 2(-2)^2 + 8(-2) + 4 = 2 \times 4 - 16 + 4 = 8 - 16 + 4 = -4 \] So, the vertex is at the point \((-2, -4)\). Next, we will plot two points to the left of the vertex and two points to the right: 1. Left of the vertex (for \( x = -3 \)): \[ y = 2(-3)^2 + 8(-3) + 4 = 2 \times 9 - 24 + 4 = 18 - 24 + 4 = -2 \quad \Rightarrow \quad (-3, -2) \] 2. Left of the vertex (for \( x = -4 \)): \[ y = 2(-4)^2 + 8(-4) + 4 = 2 \times 16 - 32 + 4 = 32 - 32 + 4 = 4 \quad \Rightarrow \quad (-4, 4) \] 3. Right of the vertex (for \( x = -1 \)): \[ y = 2(-1)^2 + 8(-1) + 4 = 2 \times 1 - 8 + 4 = 2 - 8 + 4 = -2 \quad \Rightarrow \quad (-1, -2) \] 4. Right of the vertex (for \( x = 0 \)): \[ y = 2(0)^2 + 8(0) + 4 = 4 \quad \Rightarrow \quad (0, 4) \] Now we have the following points to plot: - Vertex: \((-2, -4)\) - Left: \((-3, -2)\), \((-4, 4)\) - Right: \((-1, -2)\), \((0, 4)\) To summarize: plot the points \((-4, 4)\), \((-3, -2)\), \((-2, -4)\), \((-1, -2)\), and \((0, 4)\). Connect these points with a smooth curve to represent the parabola. Happy graphing!

preguntas relacionadas

ISCELÁNEA cribir, por simple inspección, el resultado de: \( \begin{array}{lll}(x+2)^{2} & \text { 14. }(x+y+1)(x-y-1) & \text { 27. }\left(2 a^{3}-5 b^{4}\right)^{2} \\ (x+2)(x+3) & \text { 15. }(1-a)(a+1) & \text { 28. }\left(a^{3}+12\right)\left(a^{3}-15\right) \\ (x+1)(x-1) & \text { 16. }(m-8)(m+12) & \text { 29. }\left(m^{2}-m+n\right)\left(n+m+m^{2}\right) \\ (x-1)^{2} & \text { 17. }\left(x^{2}-1\right)\left(x^{2}+3\right) & \text { 30. }\left(x^{4}+7\right)\left(x^{4}-11\right) \\ (n+3)(n+5) & \text { 18. }\left(x^{3}+6\right)\left(x^{3}-8\right) & \text { 31. }(11-a b)^{2} \\ (m-3)(m+3) & \text { 19. }\left(5 x^{3}+6 m^{4}\right)^{2} & \text { 32. }\left(x^{2} y^{3}-8\right)\left(x^{2} y^{3}+6\right) \\ (a+b-1)(a+b+1) & \text { 20. }\left(x^{4}-2\right)\left(x^{4}+5\right) & \text { 33. }(a+b)(a-b)\left(a^{2}-b^{2}\right) \\ (1+b)^{3} & \text { 21. }(1-a+b)(b-a-1) & \text { 34. }(x+1)(x-1)\left(x^{2}-2\right) \\ \left(a^{2}+4\right)\left(a^{2}-4\right) & \text { 22. }\left(a^{x}+b^{n}\right)\left(a^{x}-b^{n}\right) & \text { 35. }(a+3)\left(a^{2}+9\right)(a-3) \\ \left(3 a b-5 x^{2}\right)^{2} & \text { 23. }\left(x^{a+1}-8\right)\left(x^{a+1}+9\right) & \text { 36. }(x+5)(x-5)\left(x^{2}+1\right) \\ (a b+3)(3-a b) & \text { 24. }\left(a^{2} b^{2}+c^{2}\right)\left(a^{2} b^{2}-c^{2}\right) & \text { 37. }(a+1)(a-1)(a+2)(a-2) \\ (1-4 a x)^{2} & \text { 25. }(2 a+x)^{3} & \text { 36. }\left(x^{2}-11\right)\left(x^{2}-2\right)\end{array} \) \( \left(a^{2}+8\right)\left(a^{2}-7\right) \)
Álgebra Mexico Feb 26, 2025
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad