Graph the parabola, \[ y=2 x^{2}+8 x+4 \] Plot five points on the parabolas the vertex, twe points to the left of the vertex, and two points to the right of the vert button.
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
To graph the parabola given by the equation \( y = 2x^2 + 8x + 4 \), we can start by determining its vertex. The vertex can be found using the formula \( x = -\frac{b}{2a} \), where \( a = 2 \) and \( b = 8 \). Calculating the x-coordinate of the vertex: \[ x = -\frac{8}{2 \times 2} = -2 \] Now we can find the y-coordinate of the vertex by substituting \( x = -2 \) back into the equation: \[ y = 2(-2)^2 + 8(-2) + 4 = 2 \times 4 - 16 + 4 = 8 - 16 + 4 = -4 \] So, the vertex is at the point \((-2, -4)\). Next, we will plot two points to the left of the vertex and two points to the right: 1. Left of the vertex (for \( x = -3 \)): \[ y = 2(-3)^2 + 8(-3) + 4 = 2 \times 9 - 24 + 4 = 18 - 24 + 4 = -2 \quad \Rightarrow \quad (-3, -2) \] 2. Left of the vertex (for \( x = -4 \)): \[ y = 2(-4)^2 + 8(-4) + 4 = 2 \times 16 - 32 + 4 = 32 - 32 + 4 = 4 \quad \Rightarrow \quad (-4, 4) \] 3. Right of the vertex (for \( x = -1 \)): \[ y = 2(-1)^2 + 8(-1) + 4 = 2 \times 1 - 8 + 4 = 2 - 8 + 4 = -2 \quad \Rightarrow \quad (-1, -2) \] 4. Right of the vertex (for \( x = 0 \)): \[ y = 2(0)^2 + 8(0) + 4 = 4 \quad \Rightarrow \quad (0, 4) \] Now we have the following points to plot: - Vertex: \((-2, -4)\) - Left: \((-3, -2)\), \((-4, 4)\) - Right: \((-1, -2)\), \((0, 4)\) To summarize: plot the points \((-4, 4)\), \((-3, -2)\), \((-2, -4)\), \((-1, -2)\), and \((0, 4)\). Connect these points with a smooth curve to represent the parabola. Happy graphing!
