Pregunta
upstudy study bank question image url

Graph the equation \( y=x^{2}+12 x+32 \) on the accompanying set of axes. You must plot 5 points including the roots and the vertex.

Ask by Mejia Alexander. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To graph the equation \( y = x^{2} + 12x + 32 \), plot the following five points: 1. (–8, 0) and (–4, 0) – the roots where the parabola crosses the x-axis. 2. (–6, –4) – the vertex of the parabola. 3. (–7, –3) and (–5, –3) – additional points for symmetry. Draw a smooth, upward-opening parabola passing through these points, ensuring it is symmetric about the vertical line x = –6.

Solución

We wish to graph the parabola   y = x² + 12x + 32 by plotting at least five points, making sure to include the roots (x‑intercepts) and the vertex. Step 1. Find the x‑intercepts (roots):  • To find the roots, set y = 0:   x² + 12x + 32 = 0  • Factor the quadratic:   (x + 4)(x + 8) = 0  • Thus, the solutions are:   x + 4 = 0 ⟹ x = –4  and x + 8 = 0 ⟹ x = –8  • So the roots are at (–4, 0) and (–8, 0). Step 2. Find the vertex:  • The x‑coordinate of the vertex for a quadratic in the form y = ax² + bx + c is given by x = –b/(2a).   Here a = 1 and b = 12, so   x = –12/(2×1) = –6.  • Substitute x = –6 into the equation to find y:   y = (–6)² + 12(–6) + 32 = 36 – 72 + 32 = –4.  • The vertex is at (–6, –4). Step 3. Choose two additional points:  • Since the parabola is symmetric about the vertical line x = –6, a good choice is to pick two points that are equidistant from –6.  • Let x = –7 (one unit to the left of –6):   y = (–7)² + 12(–7) + 32 = 49 – 84 + 32 = –3.   This gives the point (–7, –3).  • Similarly, let x = –5 (one unit to the right of –6):   y = (–5)² + 12(–5) + 32 = 25 – 60 + 32 = –3.   This gives the point (–5, –3). Step 4. Summarize your five points:  1. (–8, 0)  (root)  2. (–7, –3)  3. (–6, –4)  (vertex)  4. (–5, –3)  5. (–4, 0)  (root) Step 5. Graphing the parabola:  • On your set of axes, plot the following points:   – (–8, 0) and (–4, 0) on the x‑axis.   – (–6, –4) as the lowest point (vertex) of the parabola.   – (–7, –3) and (–5, –3) just above the vertex.  • Draw a smooth, U‑shaped curve passing through these points.  • Notice the symmetry about the vertical line x = –6. The completed graph will show a parabola opening upward with its vertex at (–6, –4) and x‑intercepts at (–8, 0) and (–4, 0).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To graph the equation \( y = x^{2} + 12x + 32 \), let's first identify some key points: roots and vertex. 1. **Finding the vertex**: The vertex of a quadratic function in the form \( y = ax^2 + bx + c \) can be found using the formula \( x = -\frac{b}{2a} \). Here, \( a = 1 \) and \( b = 12 \), so: \[ x = -\frac{12}{2 \cdot 1} = -6. \] Substitute \( x = -6 \) back into the equation to find \( y \): \[ y = (-6)^{2} + 12(-6) + 32 = 36 - 72 + 32 = -4. \] Thus, the vertex is at the point \((-6, -4)\). 2. **Finding the roots**: To find the roots, we solve the equation \( x^{2} + 12x + 32 = 0 \) using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \). Here, \( a = 1 \), \( b = 12 \), and \( c = 32 \): \[ x = \frac{-12 \pm \sqrt{12^{2} - 4 \cdot 1 \cdot 32}}{2 \cdot 1} = \frac{-12 \pm \sqrt{144 - 128}}{2} = \frac{-12 \pm \sqrt{16}}{2} = \frac{-12 \pm 4}{2}. \] This gives two roots: \[ x = \frac{-8}{2} = -4 \quad \text{and} \quad x = \frac{-16}{2} = -8. \] Therefore, the roots are at the points \((-4, 0)\) and \((-8, 0)\). 3. **Choose some additional points**: To complete our five points, we can choose \( x = -7 \) and \( x = -5 \): - For \( x = -7 \): \[ y = (-7)^{2} + 12(-7) + 32 = 49 - 84 + 32 = -3, \] giving the point \((-7, -3)\). - For \( x = -5 \): \[ y = (-5)^{2} + 12(-5) + 32 = 25 - 60 + 32 = -3, \] giving the point \((-5, -3)\). 4. **Summary of points to plot**: - Vertex: \((-6, -4)\) - Roots: \((-4, 0)\) and \((-8, 0)\) - Additional points: \((-7, -3)\) and \((-5, -3)\) Now you can plot these points on the axes and draw a smooth parabola through them, opening upwards! Remember, since the vertex is at \((-6, -4)\), that will be the lowest point of the curve, making a lovely U-shape. Enjoy graphing!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad