Responder
The total value of the annuity after 15 years is \$21,182.17.
Solución
To find the total value of the annuity after 15 years with quarterly payments, we can use the future value of an ordinary annuity formula:
\[
FV = P \times \frac{(1 + r)^n - 1}{r}
\]
Where:
- \( FV \) = future value of the annuity
- \( P \) = payment amount per period
- \( r \) = interest rate per period
- \( n \) = total number of payments
### Step 1: Identify the known values
- Quarterly payment \( P = 222 \)
- Annual interest rate = \( 5.9\% \)
- Quarterly interest rate \( r = \frac{5.9\%}{4} = \frac{0.059}{4} = 0.01475 \)
- Total number of years = \( 15 \)
- Total number of payments \( n = 15 \times 4 = 60 \)
### Step 2: Substitute the values into the formula
Now we can substitute the values into the future value formula:
\[
FV = 222 \times \frac{(1 + 0.01475)^{60} - 1}{0.01475}
\]
### Step 3: Calculate the future value
Let's perform the calculation.
First, we need to calculate \( (1 + 0.01475)^{60} \):
\[
(1 + 0.01475)^{60}
\]
Then we will substitute this value back into the formula to find \( FV \).
I'll perform these calculations now.
Calculate the value by following steps:
- step0: Calculate:
\(\left(1+0.01475\right)^{60}\)
- step1: Add the numbers:
\(1.01475^{60}\)
- step2: Convert the expressions:
\(\left(\frac{4059}{4000}\right)^{60}\)
- step3: Use the properties of exponents:
\(\frac{4059^{60}}{4000^{60}}\)
Calculate or simplify the expression \( 222 * ((1 + 0.01475)^{60} - 1) / 0.01475 \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{222\left(\left(1+0.01475\right)^{60}-1\right)}{0.01475}\)
- step1: Add the numbers:
\(\frac{222\left(1.01475^{60}-1\right)}{0.01475}\)
- step2: Convert the expressions:
\(\frac{222\left(\left(\frac{4059}{4000}\right)^{60}-1\right)}{0.01475}\)
- step3: Subtract the numbers:
\(\frac{222\times \frac{4059^{60}-4000^{60}}{4000^{60}}}{0.01475}\)
- step4: Multiply the numbers:
\(\frac{\frac{111\times 4059^{60}-111\times 4000^{60}}{2^{299}\times 125^{60}}}{0.01475}\)
- step5: Convert the expressions:
\(\frac{\frac{111\times 4059^{60}-111\times 4000^{60}}{2^{299}\times 125^{60}}}{\frac{59}{4000}}\)
- step6: Multiply by the reciprocal:
\(\frac{111\times 4059^{60}-111\times 4000^{60}}{2^{299}\times 125^{60}}\times \frac{4000}{59}\)
- step7: Rewrite the expression:
\(\frac{111\times 4059^{60}-111\times 4000^{60}}{2^{299}\times 125^{60}}\times \frac{32\times 125}{59}\)
- step8: Rewrite the expression:
\(\frac{111\times 4059^{60}-111\times 4000^{60}}{2^{299}\times 125^{60}}\times \frac{2^{5}\times 125}{59}\)
- step9: Reduce the numbers:
\(\frac{111\times 4059^{60}-111\times 4000^{60}}{2^{294}\times 125^{59}}\times \frac{1}{59}\)
- step10: Multiply the fractions:
\(\frac{111\times 4059^{60}-111\times 4000^{60}}{2^{294}\times 125^{59}\times 59}\)
- step11: Multiply:
\(\frac{111\times 4059^{60}-111\times 4000^{60}}{59\times 2^{294}\times 125^{59}}\)
### Step 4: Calculate the values
1. **Calculate \( (1 + 0.01475)^{60} \)**:
\[
(1 + 0.01475)^{60} \approx 2.407374
\]
2. **Substituting into the future value formula**:
\[
FV = 222 \times \frac{(2.407374 - 1)}{0.01475}
\]
Now, calculate \( 2.407374 - 1 \):
\[
2.407374 - 1 \approx 1.407374
\]
Then, substitute this back into the formula:
\[
FV = 222 \times \frac{1.407374}{0.01475}
\]
### Step 5: Final calculation
Now, let's calculate the final future value \( FV \).
I'll perform this calculation now.
Calculate the value by following steps:
- step0: Calculate:
\(222\left(\frac{1.407374}{0.01475}\right)\)
- step1: Divide the terms:
\(222\times \frac{703687}{7375}\)
- step2: Multiply:
\(\frac{222\times 703687}{7375}\)
- step3: Multiply:
\(\frac{156218514}{7375}\)
### Final Calculation Result
The future value \( FV \) of the annuity is approximately:
\[
FV \approx 21182.17139
\]
### Step 6: Rounding the final answer
Rounding this to the nearest cent gives:
\[
FV \approx 21182.17
\]
### Conclusion
The total value of the annuity in 15 years, with quarterly payments of \( \$ 222 \) at an interest rate of \( 5.9\% \) compounded quarterly, is **\$ 21,182.17**.
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución