Pregunta
upstudy study bank question image url

An investor wants to save money to purchase real estate. He buys an annuity with quarterly payments that earn \( 5.9 \% \) interest, compounded quarterly. Payments will be made at the end of each quarter. Find the total value of the annuity in 15 years if each quarterly payment is \( \$ 222 \). Do not round any intermediate computations, and round your final answer to the nearest cent. If necessary, refer to the list of financial formulas.

Ask by Powers Carrillo. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The total value of the annuity after 15 years is \$21,182.17.

Solución

To find the total value of the annuity after 15 years with quarterly payments, we can use the future value of an ordinary annuity formula: \[ FV = P \times \frac{(1 + r)^n - 1}{r} \] Where: - \( FV \) = future value of the annuity - \( P \) = payment amount per period - \( r \) = interest rate per period - \( n \) = total number of payments ### Step 1: Identify the known values - Quarterly payment \( P = 222 \) - Annual interest rate = \( 5.9\% \) - Quarterly interest rate \( r = \frac{5.9\%}{4} = \frac{0.059}{4} = 0.01475 \) - Total number of years = \( 15 \) - Total number of payments \( n = 15 \times 4 = 60 \) ### Step 2: Substitute the values into the formula Now we can substitute the values into the future value formula: \[ FV = 222 \times \frac{(1 + 0.01475)^{60} - 1}{0.01475} \] ### Step 3: Calculate the future value Let's perform the calculation. First, we need to calculate \( (1 + 0.01475)^{60} \): \[ (1 + 0.01475)^{60} \] Then we will substitute this value back into the formula to find \( FV \). I'll perform these calculations now. Calculate the value by following steps: - step0: Calculate: \(\left(1+0.01475\right)^{60}\) - step1: Add the numbers: \(1.01475^{60}\) - step2: Convert the expressions: \(\left(\frac{4059}{4000}\right)^{60}\) - step3: Use the properties of exponents: \(\frac{4059^{60}}{4000^{60}}\) Calculate or simplify the expression \( 222 * ((1 + 0.01475)^{60} - 1) / 0.01475 \). Calculate the value by following steps: - step0: Calculate: \(\frac{222\left(\left(1+0.01475\right)^{60}-1\right)}{0.01475}\) - step1: Add the numbers: \(\frac{222\left(1.01475^{60}-1\right)}{0.01475}\) - step2: Convert the expressions: \(\frac{222\left(\left(\frac{4059}{4000}\right)^{60}-1\right)}{0.01475}\) - step3: Subtract the numbers: \(\frac{222\times \frac{4059^{60}-4000^{60}}{4000^{60}}}{0.01475}\) - step4: Multiply the numbers: \(\frac{\frac{111\times 4059^{60}-111\times 4000^{60}}{2^{299}\times 125^{60}}}{0.01475}\) - step5: Convert the expressions: \(\frac{\frac{111\times 4059^{60}-111\times 4000^{60}}{2^{299}\times 125^{60}}}{\frac{59}{4000}}\) - step6: Multiply by the reciprocal: \(\frac{111\times 4059^{60}-111\times 4000^{60}}{2^{299}\times 125^{60}}\times \frac{4000}{59}\) - step7: Rewrite the expression: \(\frac{111\times 4059^{60}-111\times 4000^{60}}{2^{299}\times 125^{60}}\times \frac{32\times 125}{59}\) - step8: Rewrite the expression: \(\frac{111\times 4059^{60}-111\times 4000^{60}}{2^{299}\times 125^{60}}\times \frac{2^{5}\times 125}{59}\) - step9: Reduce the numbers: \(\frac{111\times 4059^{60}-111\times 4000^{60}}{2^{294}\times 125^{59}}\times \frac{1}{59}\) - step10: Multiply the fractions: \(\frac{111\times 4059^{60}-111\times 4000^{60}}{2^{294}\times 125^{59}\times 59}\) - step11: Multiply: \(\frac{111\times 4059^{60}-111\times 4000^{60}}{59\times 2^{294}\times 125^{59}}\) ### Step 4: Calculate the values 1. **Calculate \( (1 + 0.01475)^{60} \)**: \[ (1 + 0.01475)^{60} \approx 2.407374 \] 2. **Substituting into the future value formula**: \[ FV = 222 \times \frac{(2.407374 - 1)}{0.01475} \] Now, calculate \( 2.407374 - 1 \): \[ 2.407374 - 1 \approx 1.407374 \] Then, substitute this back into the formula: \[ FV = 222 \times \frac{1.407374}{0.01475} \] ### Step 5: Final calculation Now, let's calculate the final future value \( FV \). I'll perform this calculation now. Calculate the value by following steps: - step0: Calculate: \(222\left(\frac{1.407374}{0.01475}\right)\) - step1: Divide the terms: \(222\times \frac{703687}{7375}\) - step2: Multiply: \(\frac{222\times 703687}{7375}\) - step3: Multiply: \(\frac{156218514}{7375}\) ### Final Calculation Result The future value \( FV \) of the annuity is approximately: \[ FV \approx 21182.17139 \] ### Step 6: Rounding the final answer Rounding this to the nearest cent gives: \[ FV \approx 21182.17 \] ### Conclusion The total value of the annuity in 15 years, with quarterly payments of \( \$ 222 \) at an interest rate of \( 5.9\% \) compounded quarterly, is **\$ 21,182.17**.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To calculate the future value of the annuity, we'll be using the Future Value of an Annuity formula: \[ FV = P \times \frac{{(1 + r)^n - 1}}{r} \] Where: - \( P \) is the payment per period (\$222), - \( r \) is the interest rate per period, - \( n \) is the total number of payments. In this case: - The annual interest rate is \( 5.9\% \), so the quarterly interest rate \( r = \frac{5.9\%}{4} = \frac{0.059}{4} = 0.01475 \). - The total number of payments over 15 years with quarterly payments is \( n = 15 \times 4 = 60 \). Now substitute these values into the formula: \[ FV = 222 \times \frac{{(1 + 0.01475)^{60} - 1}}{0.01475} \] Calculating \( (1 + 0.01475)^{60} \): \[ (1 + 0.01475)^{60} \approx 2.4596 \] Next, calculate \( (1 + 0.01475)^{60} - 1 \): \[ 2.4596 - 1 = 1.4596 \] Now, plug this into the future value formula: \[ FV = 222 \times \frac{1.4596}{0.01475} \approx 222 \times 99.4336 \approx 22005.33 \] Thus, the total value of the annuity in 15 years is approximately: \[ \boxed{22005.33} \]

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad