Pregunta
Determine whether the statement is true or false. \[ \lim _{x \rightarrow 3}\left(\frac{2 x}{x-3}-\frac{6}{x-3}\right)=\lim _{x \rightarrow 3} \frac{2 x}{x-3}-\lim _{x \rightarrow 3} \frac{6}{x-3} \] True False
Ask by Wood Gough. in the United States
Feb 26,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The statement is **False**.
Solución
To determine whether the statement is true or false, we need to analyze both sides of the equation.
The left-hand side is:
\[
\lim _{x \rightarrow 3}\left(\frac{2 x}{x-3}-\frac{6}{x-3}\right)
\]
We can combine the fractions:
\[
\lim _{x \rightarrow 3}\left(\frac{2x - 6}{x-3}\right)
\]
Now, we can factor the numerator:
\[
2x - 6 = 2(x - 3)
\]
Thus, we have:
\[
\lim _{x \rightarrow 3}\left(\frac{2(x - 3)}{x - 3}\right)
\]
For \(x \neq 3\), we can simplify this to:
\[
\lim _{x \rightarrow 3} 2 = 2
\]
Now, let's evaluate the right-hand side:
\[
\lim _{x \rightarrow 3} \frac{2 x}{x-3} - \lim _{x \rightarrow 3} \frac{6}{x-3}
\]
Both limits on the right-hand side approach infinity as \(x\) approaches 3, since the denominators approach zero. Therefore, we have:
\[
\lim _{x \rightarrow 3} \frac{2 x}{x-3} = \infty \quad \text{and} \quad \lim _{x \rightarrow 3} \frac{6}{x-3} = \infty
\]
Thus, the right-hand side becomes:
\[
\infty - \infty
\]
which is an indeterminate form.
Since the left-hand side evaluates to 2 and the right-hand side is indeterminate, we conclude that the statement is:
**False**.
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg



¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium