Pregunta
upstudy study bank question image url

\( \left. \begin{array} { l } { \cos 2 x = 2 \cos ^ { 2 } x - 1 } \\ { \int \cos ^ { 2 } x } \end{array} \right. \)

Ask by Haynes Smith. in the Philippines
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The equation \( \cos 2x = 2 \cos^2 x - 1 \) is always true. The integral of \( \cos^2 x \) is \( \frac{x}{2} + \frac{1}{4} \sin(2x) + C \).

Solución

Evaluate the integral by following steps: - step0: Evaluate using formulas and rules: \(\int \cos^{2}\left(x\right) dx\) - step1: Evaluate the integral: \(\frac{x}{2}+\frac{\sin\left(2x\right)}{4}\) - step2: Simplify the expression: \(\frac{x}{2}+\frac{1}{4}\sin\left(2x\right)\) - step3: Add the constant of integral C: \(\frac{x}{2}+\frac{1}{4}\sin\left(2x\right) + C, C \in \mathbb{R}\) Let's break down the problem step by step. ### Step 1: Solve the equation \( \cos 2x = 2 \cos^2 x - 1 \) This equation is a trigonometric identity that relates the cosine of a double angle to the square of the cosine of the angle. 1. **Recognize the identity**: The equation \( \cos 2x = 2 \cos^2 x - 1 \) is a known trigonometric identity. It states that the cosine of double an angle \( 2x \) can be expressed in terms of the cosine of the angle \( x \). 2. **No further solving needed**: Since this is an identity, it holds true for all \( x \) where \( \cos x \) is defined. ### Step 2: Evaluate the integral \( \int \cos^2 x \, dx \) The integral of \( \cos^2 x \) can be solved using the power-reduction formula: \[ \cos^2 x = \frac{1 + \cos(2x)}{2} \] Now, we can rewrite the integral: \[ \int \cos^2 x \, dx = \int \frac{1 + \cos(2x)}{2} \, dx \] This can be split into two separate integrals: \[ = \frac{1}{2} \int 1 \, dx + \frac{1}{2} \int \cos(2x) \, dx \] Calculating these integrals: 1. The integral of \( 1 \) is \( x \). 2. The integral of \( \cos(2x) \) is \( \frac{1}{2} \sin(2x) \). Putting it all together: \[ \int \cos^2 x \, dx = \frac{1}{2} x + \frac{1}{4} \sin(2x) + C \] where \( C \) is the constant of integration. ### Final Result 1. The equation \( \cos 2x = 2 \cos^2 x - 1 \) is an identity valid for all \( x \). 2. The integral \( \int \cos^2 x \, dx \) evaluates to: \[ \frac{x}{2} + \frac{1}{4} \sin(2x) + C \] where \( C \in \mathbb{R} \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

Did you know that the double angle formula for cosine, \( \cos 2x = 2 \cos^2 x - 1 \), allows us to express trigonometric functions in a simpler form? This formula is not just handy for solving equations but is also widely used in physics and engineering, particularly in analyzing wave motions and oscillations. By transforming complex angle relationships into manageable equations, it opens pathways for deeper mathematical exploration! When tackling the integral \( \int \cos^2 x \, dx \), a popular technique is to use the identity for cosine squared to simplify the integration. You can rewrite it as \( \int \frac{1 + \cos 2x}{2} \, dx \). This makes it easier to solve as you can integrate each term separately, leading to a simpler process than dealing with \( \cos^2 x \) directly. So grab your favorite integration technique and let the fun begin!

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad