Pregunta
upstudy study bank question image url

\( 1 \leftarrow \quad \) List the intercepts and test for symmetry. \[ y=\frac{-4 x^{9}}{x^{2}-4} \]

Ask by Turner Hamilton. in the United States
Jan 31,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The function \( y = \frac{-4x^{9}}{x^{2} - 4} \) has an intercept at \( (0, 0) \) and is symmetric about the origin.

Solución

Certainly! Let's analyze the function \( y = \frac{-4x^{9}}{x^{2} - 4} \) to determine its intercepts and symmetry. ### 1. Intercepts **a. X-Intercept(s):** To find the x-intercept(s), set \( y = 0 \) and solve for \( x \): \[ 0 = \frac{-4x^{9}}{x^{2} - 4} \] The fraction is zero when the **numerator** is zero (provided the denominator is not zero). So, \[ -4x^{9} = 0 \implies x^{9} = 0 \implies x = 0 \] **X-Intercept:** \( (0, 0) \) **b. Y-Intercept:** To find the y-intercept, set \( x = 0 \) and solve for \( y \): \[ y = \frac{-4(0)^{9}}{0^{2} - 4} = \frac{0}{-4} = 0 \] **Y-Intercept:** \( (0, 0) \) **Summary of Intercepts:** - **X-Intercept:** \( (0, 0) \) - **Y-Intercept:** \( (0, 0) \) ### 2. Symmetry To determine the symmetry of the function, we'll consider the following tests: **a. Symmetry about the Y-Axis (Even Function):** Replace \( x \) with \( -x \) and compare \( y(-x) \) with \( y(x) \): \[ y(-x) = \frac{-4(-x)^{9}}{(-x)^{2} - 4} = \frac{-4(-x)^{9}}{x^{2} - 4} = \frac{4x^{9}}{x^{2} - 4} \] Since \( y(-x) \neq y(x) \), the function is **not even** and does **not** have y-axis symmetry. **b. Symmetry about the Origin (Odd Function):** Check if \( y(-x) = -y(x) \): \[ -y(x) = -\left(\frac{-4x^{9}}{x^{2} - 4}\right) = \frac{4x^{9}}{x^{2} - 4} \] \[ y(-x) = \frac{4x^{9}}{x^{2} - 4} = -y(x) \] Since \( y(-x) = -y(x) \), the function is **odd** and has **origin symmetry**. **Conclusion on Symmetry:** - **Symmetric about the Origin:** Yes (the function is odd). - **Symmetric about the Y-Axis or X-Axis:** No. ### Summary - **Intercepts:** Both the x-intercept and y-intercept are at the origin \( (0, 0) \). - **Symmetry:** The graph of the function is symmetric about the origin, indicating that it is an odd function. --- **Graphical Insight (Optional):** While not requested, visualizing the function can provide additional intuition. Given that the function is odd, its graph will exhibit rotational symmetry of 180° about the origin.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the intercepts of the function \( y = \frac{-4x^9}{x^2 - 4} \), set \( x = 0 \) to find the y-intercept: \[ y(0) = \frac{-4(0)^9}{(0)^2 - 4} = \frac{0}{-4} = 0. \] Thus, the y-intercept is at \( (0, 0) \). For the x-intercepts, set \( y = 0 \): \[ \frac{-4x^9}{x^2 - 4} = 0 \Rightarrow -4x^9 = 0 \Rightarrow x = 0. \] So, the only x-intercept is also \( (0, 0) \). Now, let's test for symmetry. A function is even if \( f(x) = f(-x) \) and odd if \( f(-x) = -f(x) \). Let's check \( f(-x) \): \[ f(-x) = \frac{-4(-x)^9}{(-x)^2 - 4} = \frac{4x^9}{x^2 - 4}. \] Since \( f(-x) \neq f(x) \) and \( f(-x) \neq -f(x) \), the function has no symmetry about the y-axis or the origin.

preguntas relacionadas

1.3.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) (2) 1.4 CASE 3: \( r=1 \) 1.4.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=1 \text { ? } \] 1.4.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) (2) 1.5 CASE 4: \( r=-1 \) 1.5.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=-1 ? \] 1.5.2 Do the sums above approach some finite particular number as \( n \rightarrow \infty \) i.e. is the sequence divergent or convergent? 1.6 CASE 5: \( -1<r<1 \) REQUIREMENTS: - One A4 papers - Provided grid 1.6.1 Write THREE possible values of \( r \) such that \( -1<r<1 \). 1.6.2 Step 1. Cut the A4 size paper along the longest side into two equal Rectangles and define their areas to be 16 unit \( ^{2} \). 1.6.3 Step 2. Place one half of the rectangle in Step 1 on the desktop and cut the other half along the longest side in to two equal rectangles. 1.6.4 Step 3. Place one half of the rectangle in Step 2 on the desktop and cut the other half along the longest side into two equal rectangles. 1.6.5 Step 4. Continue with the procedures from Step 3 until you find it too difficult to fold and cut the piece of paper you are holding. 1.6.6 Step 5. The first piece of paper you placed on the desktop has an area of \( \frac{1}{2} \) the area of the A4. The second piece of paper has an area of \( \frac{1}{4} \) the area of the A4. Write the areas of the next three pieces of paper. 1.6.7 Explain why these areas form a geometric seauence

Latest Pre Calculus Questions

1.3.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) (2) 1.4 CASE 3: \( r=1 \) 1.4.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=1 \text { ? } \] 1.4.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) (2) 1.5 CASE 4: \( r=-1 \) 1.5.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=-1 ? \] 1.5.2 Do the sums above approach some finite particular number as \( n \rightarrow \infty \) i.e. is the sequence divergent or convergent? 1.6 CASE 5: \( -1<r<1 \) REQUIREMENTS: - One A4 papers - Provided grid 1.6.1 Write THREE possible values of \( r \) such that \( -1<r<1 \). 1.6.2 Step 1. Cut the A4 size paper along the longest side into two equal Rectangles and define their areas to be 16 unit \( ^{2} \). 1.6.3 Step 2. Place one half of the rectangle in Step 1 on the desktop and cut the other half along the longest side in to two equal rectangles. 1.6.4 Step 3. Place one half of the rectangle in Step 2 on the desktop and cut the other half along the longest side into two equal rectangles. 1.6.5 Step 4. Continue with the procedures from Step 3 until you find it too difficult to fold and cut the piece of paper you are holding. 1.6.6 Step 5. The first piece of paper you placed on the desktop has an area of \( \frac{1}{2} \) the area of the A4. The second piece of paper has an area of \( \frac{1}{4} \) the area of the A4. Write the areas of the next three pieces of paper. 1.6.7 Explain why these areas form a geometric seauence
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad