Pregunta
upstudy study bank question image url

This question has two parts. First, answer Part A. Then, answer Part B. Part A SPEED LIMIT Luisa is travelling on the highway at a rate of 54 miles per hour, and then increases her speed 3 miles per hour. If the speed limit is 65 mph , what is an inequality that represents how much faster she could go at her fastest speed without exceeding the speed limit? Part A Which statement about Luisa's speed is assumed to be true when solving the problem? \( \begin{array}{ll}\text { A) Luisa does not exceed the speed limit. } \\ \text { B) There are no other cars on the road with Luisa. } \\ \text { C) Luisa is not driving in the rain. } \\ \text { D) Luisa does not apply the brakes during acceleration. }\end{array} \)

Ask by Ward Bowman. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Part A: Luisa's speed after increasing by 3 mph is 57 mph. To stay within the 65 mph speed limit, she can increase her speed by at most 8 mph. So, the inequality is 57 + x ≤ 65. Assumed statement: Luisa does not exceed the speed limit.

Solución

Part A Luisa’s speed after accelerating 3 mph is 54 + 3 = 57 mph. Let x represent the additional number of mph she could increase her speed without exceeding the 65‐mph speed limit. The inequality that represents this situation is:   57 + x ≤ 65 Solving for x:   x ≤ 65 – 57   x ≤ 8 This means Luisa could increase her speed by at most 8 mph without breaking the speed limit. Now, regarding the statement assumed true when solving the problem: A) Luisa does not exceed the speed limit. This assumption is necessary because the inequality is constructed with the condition that Luisa’s speed remains at or below 65 mph.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

Luisa's maximum speed after her increase is \(54 + 3 = 57\) mph. To find the inequality that represents how much faster she could go without exceeding the speed limit of 65 mph, we set up the inequality: \(57 + x \leq 65\), where \(x\) is the additional speed she could travel. Solving for \(x\), we get \(x \leq 8\). So, Luisa can go up to 8 mph faster without exceeding the speed limit. Regarding the assumption about Luisa's speed, the statement that is considered true when solving the problem is: **A) Luisa does not exceed the speed limit.** This is the foundation for setting up the inequality to ensure she stays within legal driving regulations while analyzing her speed.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad