Pregunta
upstudy study bank question image url

Find equations of the lines that pass through the given point and are parallel to and perpendicular to the given line. \( 8 x-2 y=9,(4,1) \) (a) parallel to the given line (b) perpendicular to the given line (

Ask by Whittaker Gross. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The equations are: - Parallel: \( y - 1 = 4(x - 4) \) - Perpendicular: \( y - 1 = -\frac{1}{4}(x - 4) \)

Solución

First, rewrite the given line in slope-intercept form. The given equation is:   8x - 2y = 9 Solve for y:   8x - 2y = 9   -2y = 9 - 8x   y = 4x - 9/2 Now, the slope of the given line is 4. (a) For the line parallel to the given line, it must have the same slope, 4, and pass through the point (4, 1). Use the point-slope form:   y - 1 = 4(x - 4) This is the equation of the line parallel to the given line. (b) For the line perpendicular to the given line, its slope is the negative reciprocal of 4, which is -1/4. Again, use the point-slope form with point (4, 1):   y - 1 = -1/4 (x - 4) This is the equation of the line perpendicular to the given line. Thus, the answers are:  • Parallel: y - 1 = 4(x - 4)  • Perpendicular: y - 1 = -1/4 (x - 4)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the equation of the line parallel to the line given by \( 8x - 2y = 9 \), we first need to determine its slope. By rearranging the equation into slope-intercept form \( y = mx + b \), we get: \[ 2y = 8x - 9 \] \[ y = 4x - \frac{9}{2} \] The slope (m) of the given line is 4. A line that is parallel to this will have the same slope. Thus, using the point (4, 1), we can write the equation of the parallel line as: \[ y - 1 = 4(x - 4) \] Simplifying this gives: \[ y = 4x - 15 \] Now, for the line perpendicular to the given line, the slope will be the negative reciprocal of 4, which is \(-\frac{1}{4}\). Using the point (4, 1), we can write the equation of the perpendicular line as: \[ y - 1 = -\frac{1}{4}(x - 4) \] Simplifying this gives: \[ y = -\frac{1}{4}x + 2 \] So, the equations are: (a) \( y = 4x - 15 \) (parallel) (b) \( y = -\frac{1}{4}x + 2 \) (perpendicular)

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad