Pregunta
upstudy study bank question image url

Container A and Container B collected \( 77 \ell \) of rainwater in total. Mr Zul drained off \( 14 \ell \) of the rainwater from Container A and \( \frac{3}{8} \) of the rainwater from Container B. The volume of rainwater in Container A was \( \frac{1}{2} \) of the volume of rainwater in Container B in the end. How much rainwater did Mr Zul drain off altogether?

Ask by Rodriquez Pena. in Singapore
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Mr. Zul drained a total of 32 liters of rainwater altogether.

Solución

Let the initial amount of water in Container A be A liters and in Container B be B liters. We know that   A + B = 77     (1) Mr. Zul drained 14 liters from Container A and (3/8) of the water from Container B, so the remaining water is:   Container A: A - 14 liters   Container B: B - (3/8)B = (5/8)B liters According to the problem, after draining, the water in Container A is half the water in Container B:   A - 14 = ½ × (5/8)B = (5/16)B   (2) From equation (1), we have A = 77 - B. Substitute this into (2):   77 - B - 14 = (5/16)B   63 - B = (5/16)B Multiply both sides by 16 to eliminate the fraction:   16 × (63 - B) = 5B   1008 - 16B = 5B Combine like terms:   1008 = 21B Solve for B:   B = 1008 / 21 = 48 liters Now, find A:   A = 77 - 48 = 29 liters Determine the amounts drained from each container:   From Container A: 14 liters were drained.   From Container B: (3/8) of 48 liters = 18 liters were drained. Thus, the total water drained by Mr. Zul is:   14 liters + 18 liters = 32 liters.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

Let's denote the amount of rainwater originally in Container A as \( a \) and in Container B as \( b \). According to the information given: 1. \( a + b = 77 \) 2. After draining, the amount in Container A is \( a - 14 \) and in Container B is \( b - \frac{3}{8}b = \frac{5}{8}b \). 3. At this point, we have the equation: \[ a - 14 = \frac{1}{2} \left(\frac{5}{8}b\right) \] Now, we can solve these equations step by step: First, simplify the third equation: \[ a - 14 = \frac{5}{16}b \] Now substitute \( b = 77 - a \) into this equation: \[ a - 14 = \frac{5}{16}(77 - a) \] Multiply both sides by 16 to eliminate the fraction: \[ 16(a - 14) = 5(77 - a) \] \[ 16a - 224 = 385 - 5a \] Now, move \( 5a \) to the left side: \[ 16a + 5a = 385 + 224 \] \[ 21a = 609 \] Now, divide by 21: \[ a = 29 \] Now substitute \( a \) back to find \( b \): \[ b = 77 - a = 77 - 29 = 48 \] Now, we can find out how much rainwater he drained off: - From Container A, he drained \( 14 \ell \). - From Container B, he drained \( \frac{3}{8} \cdot 48 = 18 \ell \). Thus, the total rainwater Mr. Zul drained off is: \[ 14 + 18 = 32 \ell \] So altogether, Mr Zul drained off \( 32 \ell \) of rainwater.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad