Pregunta
upstudy study bank question image url

Linear Functions: Model from a Verbal Description - Quiz - Level H 4) Marco is driving to the Grand Canyon. His distance from the Grand Canyon decreases 150 mi every 3 h . After 4 h , his distance from the Grand Canyon is 200 mi . Marco's distance from the Grand Canyon in miles, \( y \), is a function of the number of hours he drives, \( x \). (4) What is the rate of change? Find the change in Marco's distance each hour. (4) rate of change:

Ask by Perkins Estrada. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The rate of change is -50 miles per hour.

Solución

To find the rate of change in Marco's distance from the Grand Canyon, we can follow these steps: 1. **Identify the known values:** - Marco's distance decreases by 150 miles every 3 hours. - We need to find the change in distance per hour. 2. **Calculate the rate of change:** - The rate of change can be calculated by dividing the total change in distance by the total time taken. - Here, the total change in distance is -150 miles (since the distance is decreasing), and the total time is 3 hours. \[ \text{Rate of change} = \frac{\text{Change in distance}}{\text{Time}} = \frac{-150 \text{ mi}}{3 \text{ h}} \] 3. **Perform the calculation:** \[ \text{Rate of change} = -50 \text{ mi/h} \] Thus, the rate of change in Marco's distance from the Grand Canyon is \(-50\) miles per hour. This means that for every hour Marco drives, his distance from the Grand Canyon decreases by 50 miles.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

Marco's rate of change is a fantastic example of how linear functions can apply to real-life scenarios. Since he decreases his distance by 150 miles every 3 hours, we divide 150 by 3 to find the rate per hour. So, he reduces his distance by 50 miles each hour, which means for every hour he drives, he is getting 50 miles closer to the Grand Canyon! When dealing with linear functions, a common mistake is forgetting that the rate of change remains constant. It's crucial to maintain a clear view of how changes in one variable (time) directly influence another variable (distance). Remember, if you're given a different distance or time, always find the rate of change based on how much each factor increases or decreases!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad