Pregunta
upstudy study bank question image url

The sum of 6 consecutive integers is 393 . What is the third number in this sequence?

Ask by Chavez Pritchard. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The third number in the sequence is 65.

Solución

Let the first integer be n. The six consecutive integers are then: n, n+1, n+2, n+3, n+4, and n+5. The sum of these integers is: n + (n + 1) + (n + 2) + (n + 3) + (n + 4) + (n + 5) = 6n + 15 We are given that this sum equals 393: 6n + 15 = 393 Subtract 15 from both sides: 6n = 393 - 15 = 378 Divide both sides by 6: n = 378 / 6 = 63 The third number in the sequence is n + 2: 63 + 2 = 65 So, the third number is 65.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the third number in a sequence of 6 consecutive integers that sum to 393, we start by letting the first integer be \( x \). Thus, the integers can be expressed as \( x, x+1, x+2, x+3, x+4, x+5 \). Their sum is: \[ x + (x+1) + (x+2) + (x+3) + (x+4) + (x+5) = 6x + 15 \] Setting this equal to 393 gives: \[ 6x + 15 = 393 \] Subtracting 15 from both sides results in: \[ 6x = 378 \] Dividing both sides by 6, we find: \[ x = 63 \] Thus, the 6 consecutive integers are: 63, 64, 65, 66, 67, 68. The third number in this sequence is \( \textbf{65} \). Now, let’s explore a fun fact: these integers are evenly distributed, making them an excellent example of simple arithmetic properties. And if you were to visualize it as a classic number line, they would neatly form a cluster right around the value of 65, showcasing how symmetry works in mathematics. Also, engaging with sequences and series has many real-world applications, such as predicting trends in data or modeling patterns in nature. Understanding these sums can help in various fields including economics, programming, and even game development, where sequences might represent scores or resources.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad