Pregunta
upstudy study bank question image url

Find the GCF of the following terms. \( 52 x y^{3}, 65 x^{2} y^{2},-13 x^{2} y \) The GCF is

Ask by Osborne Reid. in the United States
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The GCF is 13xy.

Solución

To find the greatest common factor (GCF), follow these steps: 1. Factor the coefficients:   • 52 = 2² · 13   • 65 = 5 · 13   • -13 = -1 · 13   The common factor among the numbers is 13. 2. For the x terms:   • 52xy³ has x¹   • 65x²y² has x²   • -13x²y has x²   The smallest power is x¹. 3. For the y terms:   • 52xy³ has y³   • 65x²y² has y²   • -13x²y has y¹   The smallest power is y¹. Combining all these, the GCF is:   13 · x · y = 13xy. Thus, the GCF of the given terms is 13xy.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the GCF of the given terms \( 52xy^{3}, 65x^{2}y^{2}, -13x^{2}y \), we start by identifying the GCF of the numerical coefficients: 52, 65, and -13. The GCF of these numbers is 13. Next, for the variables, we take the lowest power for each common variable: for \( x \), the lowest power is \( x \) (from \( xy^{3} \)), and for \( y \), it is \( y \) (from \( -13x^{2}y \)). Putting it all together, the GCF is \( 13xy \). To check if our GCF is correct, we can divide each term by \( 13xy \) and see if we get whole numbers. Dividing \( 52xy^{3} \) gives \( 4y^{2} \); \( 65x^{2}y^{2} \) gives \( 5x^{2}y \); and dividing \( -13x^{2}y \) gives \( -x \). Since all results are integers, \( 13xy \) is indeed the greatest common factor!

Latest Algebra Questions

phrase I. The difference between three times \( x \) and fifteen is greater than or equal to five 2. Five more than sixteen times \( x \) is less than or equal to six 3. Three more than two times \( x \) is less than seven \( \square \) 4. Five less than four times \( x \) is less than or equal to sixteen 5. Six times the sum of \( x \) and twelve is less than fourteen 6. The difference between fifteen and two times \( x \) is greater than five 7. The difference between eleven and four times \( x \) is greater than or equal to three 8. The sum of negative three times \( x \) and five is less than or equal to negative four 9. Fourteen less than five times \( x \) is at most eleven \( \qquad \) 10. Twice the sum of nine and \( x \) is greater than twenty II. Ten less than three times \( x \) is greater than eleven 12. Thirteen plus five times \( x \) is no more than thirty 13. Thirteen more than three times \( x \) is no more than the opposite of eleven 14. Half of the sum of \( x \) and six is no less than twenty 15. The difference between negative five times \( x \) and eight is greater than twelve. Solve only your inequalities! Look for your answer at the bottom. \[ \begin{array}{ll} N \quad 2 x+3 \leq 7 & E \\ C & 14-5 x \leq 11 \\ \text { C } 15-2 x>5 & \text { R } \\ F(9+x)>20 \\ E \quad 1 / 2 x+6 x \leq 30 & \text { D } \end{array} 6(x+12)<141 \] \[ \text { L } 5 x-14 \leq 11 \quad H \quad-3 x-5<-4 \] \[ \text { U } 3 x-15 \geq 5 \quad \text { A } 1 / 2(x+6) \geq 20 \] \[ E \quad 6(x-12)>14 \backslash \text { H } \quad 11-4 x \geq 3 \] \[ 3 x-10>11 \quad 0 \quad-5 x-8>12 \] \[ \vee 16 x+5<6 \quad \& \quad 3 x+13 \leq-11 \] \[ \text { Y } 4 x-5 \geq 16 \quad \text { \& } 16 x+5 \leq 6 \]
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad