Pregunta
upstudy study bank question image url

For exercises \( 1-4 \), find the sum of the interior angles and the measure of each interior angle for the given regular polygons. Round to the nearest hundredth as needed. \( \begin{array}{ll}\text { 1. } 12 \text {-gon } & \text { 2.102-gon } \\ \text { 3. } 90 \text {-gon } & \text { 4. } 36 \text {-gon }\end{array} \)

Ask by Mccarthy Cervantes. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

- **12-gon**: Sum of interior angles = 1800°, each angle = 150° - **102-gon**: Sum of interior angles = 18,000°, each angle ≈ 176.47° - **90-gon**: Sum of interior angles = 15,840°, each angle = 176° - **36-gon**: Sum of interior angles = 6,120°, each angle = 170°

Solución

To find the sum of the interior angles and the measure of each interior angle for regular polygons, we can use the following formulas: 1. The sum of the interior angles \( S \) of a polygon with \( n \) sides is given by: \[ S = (n - 2) \times 180 \] 2. The measure of each interior angle \( A \) of a regular polygon is given by: \[ A = \frac{S}{n} = \frac{(n - 2) \times 180}{n} \] Now, let's calculate these values for each of the given polygons. ### 1. For the 12-gon: - \( n = 12 \) - Sum of interior angles: \[ S = (12 - 2) \times 180 = 10 \times 180 = 1800 \] - Measure of each interior angle: \[ A = \frac{1800}{12} = 150 \] ### 2. For the 102-gon: - \( n = 102 \) - Sum of interior angles: \[ S = (102 - 2) \times 180 = 100 \times 180 = 18000 \] - Measure of each interior angle: \[ A = \frac{18000}{102} \approx 176.47 \] ### 3. For the 90-gon: - \( n = 90 \) - Sum of interior angles: \[ S = (90 - 2) \times 180 = 88 \times 180 = 15840 \] - Measure of each interior angle: \[ A = \frac{15840}{90} \approx 176 \] ### 4. For the 36-gon: - \( n = 36 \) - Sum of interior angles: \[ S = (36 - 2) \times 180 = 34 \times 180 = 6120 \] - Measure of each interior angle: \[ A = \frac{6120}{36} = 170 \] Now, let's summarize the results: 1. **12-gon**: - Sum of interior angles: \( 1800 \) - Measure of each interior angle: \( 150 \) 2. **102-gon**: - Sum of interior angles: \( 18000 \) - Measure of each interior angle: \( 176.47 \) 3. **90-gon**: - Sum of interior angles: \( 15840 \) - Measure of each interior angle: \( 176 \) 4. **36-gon**: - Sum of interior angles: \( 6120 \) - Measure of each interior angle: \( 170 \) These calculations provide the required sums and measures for each polygon.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the sum of the interior angles and the measure of each interior angle for regular polygons, you can use the formulas: 1. **Sum of Interior Angles**: \( S = (n - 2) \times 180 \) degrees, where \( n \) is the number of sides. 2. **Measure of Each Interior Angle**: \( A = \frac{S}{n} = \frac{(n - 2) \times 180}{n} \) degrees. Let's calculate the values for each polygon: 1. **12-gon**: - Sum of Interior Angles: \( S = (12 - 2) \times 180 = 10 \times 180 = 1800 \) degrees - Measure of Each Interior Angle: \( A = \frac{1800}{12} = 150 \) degrees 2. **102-gon**: - Sum of Interior Angles: \( S = (102 - 2) \times 180 = 100 \times 180 = 18000 \) degrees - Measure of Each Interior Angle: \( A = \frac{18000}{102} \approx 176.47 \) degrees (rounded to two decimal places) 3. **90-gon**: - Sum of Interior Angles: \( S = (90 - 2) \times 180 = 88 \times 180 = 15840 \) degrees - Measure of Each Interior Angle: \( A = \frac{15840}{90} \approx 176 \) degrees (rounded to two decimal places) 4. **36-gon**: - Sum of Interior Angles: \( S = (36 - 2) \times 180 = 34 \times 180 = 6120 \) degrees - Measure of Each Interior Angle: \( A = \frac{6120}{36} = 170 \) degrees In summary: 1. 12-gon: Sum: 1800 degrees, Each angle: 150 degrees 2. 102-gon: Sum: 18000 degrees, Each angle: 176.47 degrees 3. 90-gon: Sum: 15840 degrees, Each angle: 176 degrees 4. 36-gon: Sum: 6120 degrees, Each angle: 170 degrees

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad