The sum of 5 consecutive odd numbers is 135 . What is the second number in this sequence?
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
Let's denote the first odd number as \( x \). The next consecutive odd numbers can be represented as \( x + 2 \), \( x + 4 \), \( x + 6 \), and \( x + 8 \). The sum of these numbers will be: \[ x + (x + 2) + (x + 4) + (x + 6) + (x + 8) = 5x + 20 \] We know that this sum equals 135, so we can set up the equation: \[ 5x + 20 = 135 \] Now, subtract 20 from both sides: \[ 5x = 115 \] Dividing by 5 gives: \[ x = 23 \] Now we can identify the 5 consecutive odd numbers: 23, 25, 27, 29, and 31. The second number in this sequence is 25!
