Pregunta
upstudy study bank question image url

The system shown has ___ solution(s) \( \begin{array}{l}y=\frac{1}{2} x+1 \\ 2 y-x=2 \\ \text { infinite } \\ \text { no } \\ \text { one }\end{array} \)

Ask by Lang Paul. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The system has infinitely many solutions.

Solución

Solve the system of equations \( y=\frac{1}{2}x+1;2y-x=2 \). Solve the system of equations by following steps: - step0: Solve using the substitution method: \(\left\{ \begin{array}{l}y=\frac{1}{2}x+1\\2y-x=2\end{array}\right.\) - step1: Substitute the value of \(y:\) \(2\left(\frac{1}{2}x+1\right)-x=2\) - step2: Simplify: \(2=2\) - step3: Calculate: \(\left(x,y\right) = \left(x,\frac{1}{2}x+1\right),x \in \mathbb{R}\) - step4: Alternative Form: \(\textrm{Infinitely many solutions}\) The system of equations has infinitely many solutions.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To determine the number of solutions for the given system of equations, let's compare the two equations you provided. The first equation is in slope-intercept form, while the second can be rewritten to identify its slope and intercept. If both equations represent the same line, they will have infinitely many solutions. If they intersect at one point, they have a single solution. If they are parallel and different, there will be no solutions. After simplifying them, if we find out that both equations are equivalent, then the system has infinite solutions. If they have different slopes, they intersect at one unique point, giving one solution. If they have the same slope but different y-intercepts, the system has no solutions. Check those slopes and intercepts to find out!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad