Pregunta
upstudy study bank question image url

An investor wants to save money to purchase real estate. He deposits \( \$ 550 \) at the end of each year in an ordinary annuity that pays \( 8 \% \) interest, compounded annually. Answer each part. Do not round any Intermediate computations nor answers. If necessary, refer to the list of financial formulas. (a) Find the total value of the annuity at the end of the \( 1^{\text {st }} \) year. (b) Find the total value of the annuity at the end of the \( 2^{\text {nd }} \) year, (c) Find the total value of the annuity at the end of the \( 3^{\text {nd }} \) year. \( 5 \square \)

Ask by Macdonald Mccoy. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

(a) $550 (b) $1,144 (c) $1,785.52

Solución

We are given that the investor makes deposits of $550 at the end of each year (ordinary annuity). The annual interest rate is 8% compounded annually. For an ordinary annuity, the deposit made at the end of the year does not earn interest until the next period. Thus, the value at the end of year n is the sum of each deposit accumulated with interest for the number of years it has been invested. (a) End of the 1st year: • Only one payment of $550 is made at the end of the 1st year and no interest is accrued on that deposit at that time.   Total value = $550 (b) End of the 2nd year: • The deposit at the end of Year 1 grows for one year: 550 × 1.08 • Plus the deposit made at the end of Year 2, which does not earn any interest yet.   Total value = 550 × 1.08 + 550 Calculate:   550 × 1.08 = 594   Total value = 594 + 550 = 1144 (c) End of the 3rd year: • The deposit at the end of Year 1 grows for two years: 550 × (1.08)² • The deposit at the end of Year 2 grows for one year: 550 × 1.08 • The deposit at the end of Year 3 does not earn interest.   Total value = 550 × (1.08)² + 550 × 1.08 + 550 Calculate each term:   (1.08)² = 1.1664  so  550 × 1.1664 = 641.52 (exact)   550 × 1.08 = 594   Adding the deposit: 550 Now sum them:   Total value = 641.52 + 594 + 550 = 1785.52 Thus, the answers are: (a) $550 (b) $1144 (c) $1785.52

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To solve the problem, we will calculate the total value of the ordinary annuity at the end of each specified year using the formula for the future value of an ordinary annuity. The future value of an ordinary annuity can be calculated using the formula: \[ FV = P \times \frac{(1 + r)^n - 1}{r} \] where: - \( FV \) = future value of the annuity - \( P \) = annual payment - \( r \) = interest rate - \( n \) = number of years Given: - \( P = 550 \) - \( r = 0.08 \) (a) **Total value at the end of the 1st year:** \[ FV_1 = 550 \times \frac{(1 + 0.08)^1 - 1}{0.08} = 550 \times \frac{1.08 - 1}{0.08} = 550 \times \frac{0.08}{0.08} = 550 \times 1 = 550 \] So, the total value at the end of the 1st year is **\$550**. (b) **Total value at the end of the 2nd year:** \[ FV_2 = 550 \times \frac{(1 + 0.08)^2 - 1}{0.08} = 550 \times \frac{1.1664 - 1}{0.08} = 550 \times \frac{0.1664}{0.08} = 550 \times 2.08 = 1144 \] So, the total value at the end of the 2nd year is **\$1,144**. (c) **Total value at the end of the 3rd year:** \[ FV_3 = 550 \times \frac{(1 + 0.08)^3 - 1}{0.08} = 550 \times \frac{1.259712 - 1}{0.08} = 550 \times \frac{0.259712}{0.08} = 550 \times 3.2464 = 1786.52 \] So, the total value at the end of the 3rd year is **\$1,786.52**.

preguntas relacionadas

Latest Economics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad