Pregunta
Fill in the Blank 1 point \( e^{9-7 x}+4=81 \) Note: Enter negatives when necessary with no space between the negative sign and the number. Enter your answer as a decimal. If the answer is less than 1, be sure to include a 0 before the decimal.
Ask by Valdez Warner. in the United States
Feb 24,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
x ≈ 0.6652
Solución
We start with the equation:
e^(9 - 7x) + 4 = 81
Subtract 4 from both sides:
e^(9 - 7x) = 77
Take the natural logarithm of both sides:
9 - 7x = ln(77)
Solve for x by subtracting ln(77) from 9:
-7x = ln(77) - 9
Divide both sides by -7:
x = (9 - ln(77)) / 7
Using a calculator, ln(77) ≈ 4.3438. Then:
x ≈ (9 - 4.3438) / 7
x ≈ 4.6562 / 7
x ≈ 0.6652
Enter your answer as: 0.6652
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Extra Insights
To solve the equation \( e^{9-7x} + 4 = 81 \), we first isolate the exponential term: 1. Subtract 4 from both sides: \[ e^{9-7x} = 77 \] 2. Take the natural logarithm of both sides: \[ 9 - 7x = \ln(77) \] 3. Solve for \( x \): \[ -7x = \ln(77) - 9 \] \[ x = \frac{9 - \ln(77)}{7} \] Using a calculator, we find \( \ln(77) \approx 4.3438 \). Plugging this value in: \[ x = \frac{9 - 4.3438}{7} \approx \frac{4.6562}{7} \approx 0.6654 \] Thus, the answer is approximately \( 0.6654 \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium