Divide. \[ \frac{3 x+3}{x-2} \div \frac{x^{2}-2 x-3}{x^{2}-4} \] Simplify. your answer as much as possible. \( \square \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
To simplify the expression \[ \frac{3x+3}{x-2} \div \frac{x^2-2x-3}{x^2-4}, \] we first rewrite the division as multiplication by the reciprocal: \[ \frac{3x+3}{x-2} \times \frac{x^2-4}{x^2-2x-3}. \] Next, we can factor the components. The numerator \(3x+3\) can be factored as \(3(x+1)\). For \(x^2-2x-3\), we look for two numbers that multiply to \(-3\) and add to \(-2\), which are \(-3\) and \(1\). Thus, it factors to \((x-3)(x+1)\). The expression \(x^2-4\) can be factored as \((x-2)(x+2)\). Now, substituting the factored forms, we get: \[ \frac{3(x+1)}{x-2} \times \frac{(x-2)(x+2)}{(x-3)(x+1)}. \] Now we can cancel out the common factors. The \(x+1\) in the numerator and denominator cancel, and \(x-2\) in the numerator and denominator also cancel: \[ \frac{3 \cancel{(x+1)}}{\cancel{(x-2)}} \times \frac{\cancel{(x-2)}(x+2)}{(x-3)\cancel{(x+1)}} = \frac{3(x+2)}{x-3}. \] Therefore, the simplified form of the original expression is: \[ \frac{3(x+2)}{x-3}. \] You can express it as: \[ \frac{3x + 6}{x - 3}. \]
