Find the sum of the measure of the interior angles of each polygon. \( \begin{array}{l}\text { 7. Hexagon } \\ \text { 8. Decagon }\end{array} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
To find the sum of the measure of the interior angles of a polygon, you can use the formula: \( S = (n - 2) \times 180^\circ \), where \( S \) is the sum of the interior angles and \( n \) is the number of sides of the polygon. For a hexagon, \( n = 6 \): \[ S = (6 - 2) \times 180^\circ = 4 \times 180^\circ = 720^\circ \] For a decagon, \( n = 10 \): \[ S = (10 - 2) \times 180^\circ = 8 \times 180^\circ = 1440^\circ \] So the sum of the interior angles is 720° for a hexagon and 1440° for a decagon.
