Pregunta
upstudy study bank question image url

You deposit \( \$ 2000 \) in an account earning \( 4 \% \) interest compounded quarterly. How much will you have in the account in 15 years? Round your answer to the nearest cent.

Ask by Frank Reeves. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

After 15 years, you will have approximately \$3,633.39 in the account.

Solución

To calculate the amount of money in the account after 15 years with compound interest, we can use the formula for compound interest: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] Where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (initial deposit). - \( r \) is the annual interest rate (in decimal form). - \( n \) is the number of times that interest is compounded per year. - \( t \) is the time the money is invested for in years. Given: - \( P = \$2000 \) - \( r = 4\% = 0.04 \) - \( n = 4 \) (compounded quarterly) - \( t = 15 \) years Substitute the given values into the formula: \[ A = 2000 \left(1 + \frac{0.04}{4}\right)^{4 \times 15} \] Now, we can calculate the amount of money in the account after 15 years. Calculate the value by following steps: - step0: Calculate: \(2000\left(1+\frac{0.04}{4}\right)^{4\times 15}\) - step1: Divide the terms: \(2000\left(1+\frac{1}{100}\right)^{4\times 15}\) - step2: Add the numbers: \(2000\left(\frac{101}{100}\right)^{4\times 15}\) - step3: Multiply the numbers: \(2000\left(\frac{101}{100}\right)^{60}\) - step4: Simplify: \(2000\times \frac{101^{60}}{100^{60}}\) - step5: Rewrite the expression: \(1000\times 2\times \frac{101^{60}}{100^{60}}\) - step6: Rewrite the expression: \(10^{3}\times 2\times \frac{101^{60}}{10^{120}}\) - step7: Reduce the numbers: \(2\times \frac{101^{60}}{10^{117}}\) - step8: Rewrite the expression: \(2\times \frac{101^{60}}{2^{117}\times 5^{117}}\) - step9: Reduce the numbers: \(1\times \frac{101^{60}}{2^{116}\times 5^{117}}\) - step10: Multiply the fractions: \(\frac{101^{60}}{2^{116}\times 5^{117}}\) The amount of money in the account after 15 years with compound interest is approximately $3633.39. Rounding to the nearest cent, the amount is $3633.39.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To calculate the future value of your investment, we can use the formula for compound interest: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (the initial amount of money). - \( r \) is the annual interest rate (decimal). - \( n \) is the number of times that interest is compounded per year. - \( t \) is the number of years the money is invested or borrowed. In this case, \( P = 2000 \), \( r = 0.04 \), \( n = 4 \), and \( t = 15 \). Substituting the values into the formula: \[ A = 2000 \left(1 + \frac{0.04}{4}\right)^{4 \times 15} \] \[ A = 2000 \left(1 + 0.01\right)^{60} \] \[ A = 2000 \left(1.01\right)^{60} \] Calculating \( (1.01)^{60} \): \[ (1.01)^{60} \approx 1.8194 \] Now substituting back into the formula: \[ A \approx 2000 \times 1.8194 \approx 3638.80 \] Thus, the amount in the account after 15 years will be approximately \( \$3638.80 \).

Latest Arithmetic Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad