[-/1 Points] DETAILS MY NOTES LARCALC12 2.4.507.XP. ASK YOUR TEACHER PRACTICE ANOTHER The speed \( S \) of blood that is \( r \) centimeters from the center of an artery is given below, where \( C \) is a constant, \( R \) is the radius of the artery, and \( S \) is measured in centimeters per second. Suppose a drug is administered and tha artery begins to ollate at a rate of dR/dt. At a constant distance r, find the rate (in cm/s) at which s changes with respect to \( t \) for \( C=1.26 \times 10^{5}, R=1.3 \times 10^{-2} \), and \( d R / d t=2.0 \times 10^{-5} \). (Round your answer to 4 decimal places.) \[ \begin{array}{c} s=c\left(R^{2}-r^{2}\right) \\ \frac{d s}{d t}=\square \mathrm{cm} / \mathrm{s} \end{array} \]
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Beyond the Answer
To find the rate at which the speed \( S \) changes with respect to time \( t \), we need to differentiate the equation for speed \( S = C(R^2 - r^2) \) with respect to \( t \). By applying the chain rule, we can express the rate of change: \[ \frac{dS}{dt} = C \cdot \frac{d}{dt}(R^2 - r^2) = C \cdot (2R\frac{dR}{dt} - 0) \] Substituting the given values: \[ C = 1.26 \times 10^{5}, R = 1.3 \times 10^{-2}, \frac{dR}{dt} = 2.0 \times 10^{-5} \] Now calculate \( \frac{dS}{dt} \): \[ \frac{dS}{dt} = 1.26 \times 10^{5} \cdot 2(1.3 \times 10^{-2})(2.0 \times 10^{-5}) \] \[ = 1.26 \times 10^{5} \cdot 2.6 \times 10^{-7} \] \[ \approx 0.03276 \] Thus, rounding to four decimal places, we get: \[ \frac{dS}{dt} \approx 0.0328 \mathrm{cm/s} \]
