Pregunta
upstudy study bank question image url

[-/1 Points] DETAILS MY NOTES LARCALC12 2.4.507.XP. ASK YOUR TEACHER PRACTICE ANOTHER The speed \( S \) of blood that is \( r \) centimeters from the center of an artery is given below, where \( C \) is a constant, \( R \) is the radius of the artery, and \( S \) is measured in centimeters per second. Suppose a drug is administered and tha artery begins to ollate at a rate of dR/dt. At a constant distance r, find the rate (in cm/s) at which s changes with respect to \( t \) for \( C=1.26 \times 10^{5}, R=1.3 \times 10^{-2} \), and \( d R / d t=2.0 \times 10^{-5} \). (Round your answer to 4 decimal places.) \[ \begin{array}{c} s=c\left(R^{2}-r^{2}\right) \\ \frac{d s}{d t}=\square \mathrm{cm} / \mathrm{s} \end{array} \]

Ask by Munoz Wade. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The rate at which the speed \( s \) changes with respect to time \( t \) is approximately **0.0655 cm/s**.

Solución

We start with the given formula for the speed of the blood:   s = C (R² − r²) where:   C = 1.26×10⁵,   R = radius of the artery,   r = fixed distance from the center (constant),   and the rate of dilation is given by dR/dt. Since r is constant, differentiate s with respect to t:   ds/dt = C d/dt (R² − r²) = C (2R dR/dt − 0) = 2C R (dR/dt). Now substitute the given values:   C = 1.26×10⁵,   R = 1.3×10⁻² cm,   dR/dt = 2.0×10⁻⁵ cm/s. Plug these into the formula:   ds/dt = 2 × (1.26×10⁵) × (1.3×10⁻²) × (2.0×10⁻⁵). Step 1: Compute 2 × (1.26×10⁵):   2 × 1.26×10⁵ = 2.52×10⁵. Step 2: Multiply by R:   2.52×10⁵ × 1.3×10⁻² = 2.52 × 1.3 × 10^(5 − 2)     = 3.276 × 10³. Step 3: Multiply by dR/dt:   3.276×10³ × 2.0×10⁻⁵ = 3.276 × 2.0 × 10^(3 − 5)     = 6.552 × 10⁻². Thus, ds/dt ≈ 0.06552 cm/s, which when rounded to 4 decimal places is:   ds/dt ≈ 0.0655 cm/s. So the rate at which the speed s changes with respect to time t is 0.0655 cm/s.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the rate at which the speed \( S \) changes with respect to time \( t \), we need to differentiate the equation for speed \( S = C(R^2 - r^2) \) with respect to \( t \). By applying the chain rule, we can express the rate of change: \[ \frac{dS}{dt} = C \cdot \frac{d}{dt}(R^2 - r^2) = C \cdot (2R\frac{dR}{dt} - 0) \] Substituting the given values: \[ C = 1.26 \times 10^{5}, R = 1.3 \times 10^{-2}, \frac{dR}{dt} = 2.0 \times 10^{-5} \] Now calculate \( \frac{dS}{dt} \): \[ \frac{dS}{dt} = 1.26 \times 10^{5} \cdot 2(1.3 \times 10^{-2})(2.0 \times 10^{-5}) \] \[ = 1.26 \times 10^{5} \cdot 2.6 \times 10^{-7} \] \[ \approx 0.03276 \] Thus, rounding to four decimal places, we get: \[ \frac{dS}{dt} \approx 0.0328 \mathrm{cm/s} \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad