Pregunta
upstudy study bank question image url

Frank plans to buy a used car that costs \( \$ 26,000 \). The dealer requires a \( 5 \% \) down payment. The rest of the cost is financed with a 3 -year, fixed-rate amortize auto loan at \( 9 \% \) annual interest with monthly payments. Complete the parts below. Do not round any intermediate computations. Round your final answers to the nearest cent if necessary. If necessary, refer to the list of financial formulas. (a) Find the required down payment. (b) Find the amount of the auto loan. \( \$ \) (c) Find the monthly payment. (

Ask by Rojas Frazier. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

(a) Down payment: $1,300 (b) Auto loan amount: $24,700 (c) Monthly payment: $785.45

Solución

Given: - Cost of the used car = $26,000 - Down payment = 5% of the cost of the car - Interest rate = 9% per annum - Loan duration = 3 years - Monthly payments (a) Find the required down payment: The down payment is 5% of the cost of the car. To find the down payment, we can calculate 5% of $26,000. Down payment = 5% of $26,000 = 0.05 * $26,000 = $1,300 (b) Find the amount of the auto loan: The amount of the auto loan is the cost of the car minus the down payment. Amount of the auto loan = Cost of the car - Down payment Amount of the auto loan = $26,000 - $1,300 = $24,700 (c) Find the monthly payment: To find the monthly payment, we can use the formula for monthly payments on a fixed-rate amortize loan: \[ M = \frac{P \times r \times (1 + r)^n}{(1 + r)^n - 1} \] Where: - \( M \) is the monthly payment - \( P \) is the principal amount (amount of the auto loan) - \( r \) is the monthly interest rate (annual interest rate divided by 12) - \( n \) is the number of payments (loan duration in years multiplied by 12) First, we need to calculate the monthly interest rate: \[ r = \frac{9\%}{12} = \frac{0.09}{12} = 0.0075 \] Now, we can calculate the monthly payment using the formula: \[ M = \frac{24700 \times 0.0075 \times (1 + 0.0075)^{36}}{(1 + 0.0075)^{36} - 1} \] Let's calculate the monthly payment. Calculate the value by following steps: - step0: Calculate: \(\frac{24700\times 0.0075\left(1+0.0075\right)^{36}}{\left(\left(1+0.0075\right)^{36}-1\right)}\) - step1: Remove the parentheses: \(\frac{24700\times 0.0075\left(1+0.0075\right)^{36}}{\left(1+0.0075\right)^{36}-1}\) - step2: Add the numbers: \(\frac{24700\times 0.0075\times 1.0075^{36}}{\left(1+0.0075\right)^{36}-1}\) - step3: Add the numbers: \(\frac{24700\times 0.0075\times 1.0075^{36}}{1.0075^{36}-1}\) - step4: Convert the expressions: \(\frac{24700\times 0.0075\left(\frac{403}{400}\right)^{36}}{1.0075^{36}-1}\) - step5: Convert the expressions: \(\frac{24700\times 0.0075\left(\frac{403}{400}\right)^{36}}{\left(\frac{403}{400}\right)^{36}-1}\) - step6: Multiply: \(\frac{\frac{741\times 403^{36}}{4\times 400^{36}}}{\left(\frac{403}{400}\right)^{36}-1}\) - step7: Subtract the numbers: \(\frac{\frac{741\times 403^{36}}{4\times 400^{36}}}{\frac{403^{36}-400^{36}}{400^{36}}}\) - step8: Multiply by the reciprocal: \(\frac{741\times 403^{36}}{4\times 400^{36}}\times \frac{400^{36}}{403^{36}-400^{36}}\) - step9: Rewrite the expression: \(\frac{741\times 403^{36}}{4\times 400^{36}}\times \frac{16^{36}\times 25^{36}}{403^{36}-400^{36}}\) - step10: Rewrite the expression: \(\frac{741\times 403^{36}}{4\times 400^{36}}\times \frac{4^{72}\times 25^{36}}{403^{36}-400^{36}}\) - step11: Reduce the numbers: \(\frac{741\times 403^{36}}{400^{36}}\times \frac{4^{71}\times 25^{36}}{403^{36}-400^{36}}\) - step12: Rewrite the expression: \(\frac{741\times 403^{36}}{16^{36}\times 25^{36}}\times \frac{4^{71}\times 25^{36}}{403^{36}-400^{36}}\) - step13: Rewrite the expression: \(\frac{741\times 403^{36}}{4^{72}\times 25^{36}}\times \frac{4^{71}\times 25^{36}}{403^{36}-400^{36}}\) - step14: Reduce the numbers: \(\frac{741\times 403^{36}}{4}\times \frac{1}{403^{36}-400^{36}}\) - step15: Multiply the fractions: \(\frac{741\times 403^{36}}{4\left(403^{36}-400^{36}\right)}\) - step16: Multiply: \(\frac{741\times 403^{36}}{4\times 403^{36}-4\times 400^{36}}\) The monthly payment is approximately $785.45.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To tackle Frank's car purchase, let's break it down step-by-step! To begin with, Frank's required down payment is 5% of the total cost of the car. So, we calculate: \[ \text{Down payment} = 0.05 \times \$26,000 = \$1,300 \] Now, moving on to the amount of the auto loan. Since the down payment is deducted from the total price, the loan amount would be: \[ \text{Loan amount} = \text{Total cost} - \text{Down payment} = \$26,000 - \$1,300 = \$24,700 \] Next, we need to find the monthly payment for the auto loan. We use the formula for monthly payments on an amortizing loan: \[ M = P \times \left(\frac{r(1 + r)^n}{(1 + r)^n - 1}\right) \] Where: - \( P \) is the loan amount (\$24,700) - \( r \) is the monthly interest rate (annual rate of 9% divided by 12 months = 0.0075) - \( n \) is the number of payments (3 years × 12 months = 36) Now plug in the values: \[ M = 24,700 \times \left(\frac{0.0075(1 + 0.0075)^{36}}{(1 + 0.0075)^{36} - 1}\right) \] Calculating this will give us: 1. Calculate \( (1 + 0.0075)^{36} \approx 1.28368 \) 2. Therefore: \[ M = 24,700 \times \left(\frac{0.0075 \times 1.28368}{1.28368 - 1}\right) \approx 24,700 \times \left(\frac{0.0096276}{0.28368}\right) \] 3. This results in: \[ M \approx 24,700 \times 0.03398 \approx 839.63 \] So, rounding to the nearest cent, Frank's monthly payment will be approximately: \[ \boxed{839.63} \] Thus, summarizing the answers: (a) The required down payment is \$1,300. (b) The amount of the auto loan is \$24,700. (c) The monthly payment is approximately \$839.63.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad