Pregunta
Divide. \[ \left(b^{2}-16 b+64\right) \div(b-8) \] \( \square \)
Ask by Henry Davey. in the United States
Feb 27,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The result is \( b - 8 \).
Solución
Calculate or simplify the expression \( (b^{2}-16b+64)/(b-8) \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{\left(b^{2}-16b+64\right)}{\left(b-8\right)}\)
- step1: Remove the parentheses:
\(\frac{b^{2}-16b+64}{b-8}\)
- step2: Factor the expression:
\(\frac{\left(b-8\right)^{2}}{b-8}\)
- step3: Divide the numbers:
\(\left(b-8\right)^{2-1}\)
- step4: Subtract the terms:
\(\left(b-8\right)^{1}\)
- step5: Simplify:
\(b-8\)
The result of dividing \(b^{2}-16b+64\) by \(b-8\) is \(b-8\).
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Beyond the Answer
To divide \( b^{2} - 16b + 64 \) by \( b - 8 \), we first note that the expression \( b^{2} - 16b + 64 \) can be factored. It factors as: \[ (b - 8)(b - 8) = (b - 8)^{2} \] Now, when we divide \( (b - 8)^{2} \) by \( b - 8 \), we have: \[ \frac{(b - 8)(b - 8)}{b - 8} = b - 8 \] Thus, the result of the division is: \[ \boxed{b - 8} \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium