A certain forest covers an area of \( 2400 \mathrm{~km}^{2} \). Suppose that each year this area decreases by \( 5.25 \% \). What will the area be after 7 years? Use the calculator provided and round your answer to the nearest square kilometer.
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Bonus Knowledge
To determine the area of the forest after 7 years, you can use the formula for exponential decay: \[ \text{Area after } t \text{ years} = \text{Initial Area} \times (1 - \text{Decay Rate})^t \] Given: - Initial Area = \( 2400 \ \text{km}^2 \) - Decay Rate = \( 5.25\% = 0.0525 \) - \( t = 7 \) So, the calculation will look like this: \[ \text{Area after 7 years} = 2400 \times (1 - 0.0525)^7 \] \[ = 2400 \times (0.9475)^7 \] \[ = 2400 \times 0.66764 \quad (\text{approximately}) \] \[ \approx 1602.4 \] Rounding to the nearest square kilometer, the area after 7 years will be approximately \( 1602 \ \text{km}^2 \).
