Pregunta
upstudy study bank question image url

How much should be invested now at an interest rate of \( 6.5 \% \) per year, compounded continuously, to have \( \$ 3500 \) in two years? Do not round any intermediate computations, and round your answer to the nearest cent. If necessary, refer to the list of financial formulas.

Ask by Garrett Clark. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

You should invest approximately \$3,073.35 now.

Solución

We use the formula for continuous compounding, which states that   A = P · e^(rt), where  A = the future amount,  P = the present investment,  r = the annual interest rate (in decimal),  t = the time in years. We want A = 3500 dollars, r = 0.065, and t = 2 years. Rearranging the formula to solve for P gives:   P = A / e^(rt). Substitute the known values:   P = 3500 / e^(0.065 × 2)     = 3500 / e^(0.13). Now, compute e^(0.13):   e^(0.13) ≈ 1.13883 Thus,   P ≈ 3500 / 1.13883     ≈ 3073.35. So, you should invest approximately $3,073.35 now.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the amount that should be invested now, we can use the formula for continuous compounding, which is given by: \[ P = A \cdot e^{-rt} \] where: - \( P \) is the present value (the amount to be invested now), - \( A \) is the amount of money desired in the future (\$3500), - \( r \) is the interest rate (6.5% or 0.065), - \( t \) is the time in years (2 years), - \( e \) is the base of the natural logarithm (approximately equal to 2.71828). Plugging in the values: \[ P = 3500 \cdot e^{-0.065 \cdot 2} \] Calculating \( -0.065 \cdot 2 \): \[ -0.065 \cdot 2 = -0.13 \] Now, calculating \( e^{-0.13} \): \[ e^{-0.13} \approx 0.876 \] Thus, \[ P \approx 3500 \cdot 0.876 = 3066 \] Finally, rounding to the nearest cent, the amount to be invested now is approximately: \[ \boxed{3066.53} \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad