Pregunta
upstudy study bank question image url

\( \$ 1,500 \) is invested in two different accounts paying \( 4 \% \) and \( 5 \% \) interest. If a total of \( \$ 67 \) interest is earned after one year, then how much money was invested at \( 4 \% \) ? \( \$ 700 \) \( \$ 800 \) \( \$ 900 \)

Ask by Boyd Simmons. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

\$800 was invested at 4%.

Solución

Let's denote the amount invested at \( 4\% \) interest as \( x \) and the amount invested at \( 5\% \) interest as \( 1500 - x \). The interest earned from the amount invested at \( 4\% \) interest is \( 0.04x \) and the interest earned from the amount invested at \( 5\% \) interest is \( 0.05(1500 - x) \). Given that the total interest earned after one year is \( \$67 \), we can set up the equation: \[ 0.04x + 0.05(1500 - x) = 67 \] Now, we can solve this equation to find the value of \( x \), which represents the amount invested at \( 4\% \) interest. Solve the equation by following steps: - step0: Solve for \(x\): \(0.04x+0.05\left(1500-x\right)=67\) - step1: Move the expression to the left side: \(0.04x+0.05\left(1500-x\right)-67=0\) - step2: Calculate: \(-0.01x+8=0\) - step3: Move the constant to the right side: \(-0.01x=0-8\) - step4: Remove 0: \(-0.01x=-8\) - step5: Change the signs: \(0.01x=8\) - step6: Divide both sides: \(\frac{0.01x}{0.01}=\frac{8}{0.01}\) - step7: Divide the numbers: \(x=800\) The amount invested at \( 4\% \) interest is \( \$800 \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To solve this, let's call the amount invested at 4% "x" and the amount invested at 5% "y". According to the problem, we have two equations: 1. \( x + y = 1500 \) (the total investment) 2. \( 0.04x + 0.05y = 67 \) (the total interest earned) From the first equation, we can express \( y \) as \( y = 1500 - x \). Now substitute this into the second equation: \( 0.04x + 0.05(1500 - x) = 67 \) Expanding this gives: \( 0.04x + 75 - 0.05x = 67 \) Combining like terms: \( -0.01x + 75 = 67 \) Now, isolate \( x \): \( -0.01x = 67 - 75 \) \( -0.01x = -8 \) Dividing both sides by -0.01: \( x = 800 \) So, \( \$ 800 \) was invested at \( 4 \% \). Now let's get into some fun facts! Every penny counts! Interest earned on investments can add up over time, and understanding how different rates impact your overall earnings can dramatically change your investment decisions. If you ever find yourself stuck, just remember that a little math can go a long way! Moreover, did you know that Albert Einstein called compound interest the "eighth wonder of the world"? Just imagine how much your \( \$ 800 \) could grow over decades if reinvested rather than just sitting idle in a bank account! So always keep an eye on those interest rates and let your money work for you!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad