Pregunta
upstudy study bank question image url

1.3.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) (2) 1.4 CASE 3: \( r=1 \) 1.4.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=1 \text { ? } \] 1.4.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) (2) 1.5 CASE 4: \( r=-1 \) 1.5.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=-1 ? \] 1.5.2 Do the sums above approach some finite particular number as \( n \rightarrow \infty \) i.e. is the sequence divergent or convergent? 1.6 CASE 5: \( -1
Ask by Chandler Page. in South Africa
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

**1.3.2 Conjecture:** - If \( |r| < 1 \), then \( r^{n} \) approaches 0 as \( n \) increases. - If \( |r| > 1 \), then \( r^{n} \) grows without bound. - If \( r = 1 \), \( r^{n} \) remains 1. - If \( r = -1 \), \( r^{n} \) alternates between 1 and -1. **1.4 CASE 3: \( r = 1 \)** - The sum \( S_{n} = n \times a \). - As \( n \) increases, \( S_{n} \) grows without bound if \( a \neq 0 \). **1.5 CASE 4: \( r = -1 \)** - The sum alternates between \( a \) and 0. - The series does not approach a finite number and is divergent. **1.6 CASE 5: \( -1 < r < 1 \)** - Three possible values of \( r \): 0.5, -0.75, 0.2. - Cutting the A4 paper in half each time creates areas that form a geometric sequence: 16, 8, 4, 2, 1 unit². **1.6.7 Explanation:** Each subsequent piece of paper has half the area of the previous one, forming a geometric sequence with a common ratio of 1/2.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

The Deep Dive

As \( n \rightarrow \infty \) for the case where \( r < 1 \) (but greater than -1), \( r^n \) approaches 0, meaning the terms of the geometric series diminish toward zero. Thus, the partial sum \( S_n \) converges to \( \frac{a}{1 - r} \). The intuition here is that even though you're adding increasingly small values, the sum stabilizes to a constant limit! For the case where \( r = 1 \), the series becomes \( S_n = a + a + a + \ldots + a = na \). As \( n \rightarrow \infty \), clearly \( S_n \) diverges to infinity, reinforcing the idea that adding the same non-zero amount endlessly leads to an unbounded sum! So watch out—this series will never settle down!

preguntas relacionadas

Latest Pre Calculus Questions

1.3.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) (2) 1.4 CASE 3: \( r=1 \) 1.4.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=1 \text { ? } \] 1.4.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) (2) 1.5 CASE 4: \( r=-1 \) 1.5.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=-1 ? \] 1.5.2 Do the sums above approach some finite particular number as \( n \rightarrow \infty \) i.e. is the sequence divergent or convergent? 1.6 CASE 5: \( -1<r<1 \) REQUIREMENTS: - One A4 papers - Provided grid 1.6.1 Write THREE possible values of \( r \) such that \( -1<r<1 \). 1.6.2 Step 1. Cut the A4 size paper along the longest side into two equal Rectangles and define their areas to be 16 unit \( ^{2} \). 1.6.3 Step 2. Place one half of the rectangle in Step 1 on the desktop and cut the other half along the longest side in to two equal rectangles. 1.6.4 Step 3. Place one half of the rectangle in Step 2 on the desktop and cut the other half along the longest side into two equal rectangles. 1.6.5 Step 4. Continue with the procedures from Step 3 until you find it too difficult to fold and cut the piece of paper you are holding. 1.6.6 Step 5. The first piece of paper you placed on the desktop has an area of \( \frac{1}{2} \) the area of the A4. The second piece of paper has an area of \( \frac{1}{4} \) the area of the A4. Write the areas of the next three pieces of paper. 1.6.7 Explain why these areas form a geometric seauence
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad