1.3.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \)
(2)
1.4 CASE 3: \( r=1 \)
1.4.1 What is the sum of the geometric series
\[
S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=1 \text { ? }
\]
1.4.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \)
(2)
1.5 CASE 4: \( r=-1 \)
1.5.1 What is the sum of the geometric series
\[
S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=-1 ?
\]
1.5.2 Do the sums above approach some finite particular number as \( n \rightarrow \infty \) i.e. is the sequence divergent or convergent?
1.6 CASE 5: \( -1
Ask by Chandler Page. in South Africa
Feb 27,2025
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
As \( n \rightarrow \infty \) for the case where \( r < 1 \) (but greater than -1), \( r^n \) approaches 0, meaning the terms of the geometric series diminish toward zero. Thus, the partial sum \( S_n \) converges to \( \frac{a}{1 - r} \). The intuition here is that even though you're adding increasingly small values, the sum stabilizes to a constant limit! For the case where \( r = 1 \), the series becomes \( S_n = a + a + a + \ldots + a = na \). As \( n \rightarrow \infty \), clearly \( S_n \) diverges to infinity, reinforcing the idea that adding the same non-zero amount endlessly leads to an unbounded sum! So watch out—this series will never settle down!
