Pregunta
upstudy study bank question image url

\begin{tabular}{|l}\hline Question 7 \\ Identify the most simplified version of \\ the expression below: \\ \begin{tabular}{ll}\( -2 \sqrt{48}-3 \sqrt{48} \) \\ \( \begin{array}{ll}\text { A) }-20 \sqrt{3} & \text { B) }-44 \sqrt{3} \\ \text { C) }-32 \sqrt{3} & \text { D) }-52 \sqrt{3}\end{array} \) \\ OD \\ OB A \\ OC \\ \hline\end{tabular} \\ \hline\end{tabular}

Ask by Cox Love. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The simplified expression is \( -20 \sqrt{3} \), which is option A.

Solución

To simplify the expression \( -2 \sqrt{48} - 3 \sqrt{48} \), we can follow these steps: 1. **Combine like terms**: Since both terms contain \( \sqrt{48} \), we can factor it out. \[ -2 \sqrt{48} - 3 \sqrt{48} = (-2 - 3) \sqrt{48} \] 2. **Calculate the coefficient**: \[ -2 - 3 = -5 \] So, we have: \[ -5 \sqrt{48} \] 3. **Simplify \( \sqrt{48} \)**: We can simplify \( \sqrt{48} \) as follows: \[ \sqrt{48} = \sqrt{16 \cdot 3} = \sqrt{16} \cdot \sqrt{3} = 4 \sqrt{3} \] 4. **Substitute back into the expression**: \[ -5 \sqrt{48} = -5 \cdot 4 \sqrt{3} = -20 \sqrt{3} \] Thus, the most simplified version of the expression \( -2 \sqrt{48} - 3 \sqrt{48} \) is: \[ -20 \sqrt{3} \] The correct answer is **A) \(-20 \sqrt{3}\)**.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Let's break this down with some quick calculations! First, we need to simplify \( -2 \sqrt{48} - 3 \sqrt{48} \). Combining the like terms gives us: \[ (-2 - 3) \sqrt{48} = -5 \sqrt{48} \] Now, we simplify \(\sqrt{48}\). Factoring gives us: \[ \sqrt{48} = \sqrt{16 \cdot 3} = 4\sqrt{3} \] Substituting back, we have: \[ -5 \sqrt{48} = -5 \cdot 4 \sqrt{3} = -20 \sqrt{3} \] So, the most simplified version of the expression is \( A) -20 \sqrt{3} \). Ready for some fun facts? Did you know that the square root of a number can often be simplified based on its prime factors? This makes it easier to handle radical expressions. When you break it down using factorization, such as identifying perfect squares, the process becomes much smoother! For real-world applications, learning to simplify expressions like this can be a game-changer in fields like engineering and architecture, where you often work with root calculations and need to present them in their simplest form for clear communication. Whether it’s calculating areas or designing structures, a clean solution helps avoid confusion!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad