Pregunta
upstudy study bank question image url

SOLVING AN EXPONENTIAL EQUATIO OMMON BASE \[ \begin{array}{l} =81 \\ 3^{x}=3^{4} \\ x=4 \end{array} \] 2 solve \( 16^{x-2}=4 \) \[ \begin{array}{l} 16^{x-2}=4 \\ \frac{1}{4^{2(x-2)}=4^{\prime}} \\ \quad 2(x-2)=1 \end{array} \] 4 \[ \begin{array}{l} 8^{2 x+3}=1 \\ 8^{2 x+3}=8^{0} \rightarrow \frac{2 x+13-5}{2 x=-2} \end{array} \] \( 716^{2 x+1}=64^{x+5} \) \( 6 \quad 9^{3 x-1} \) \( =27 \) 8 \[ 16^{x+3}=32^{3 x-2} \] \[ \begin{aligned} 9^{3 x-1}=3^{3} \rightarrow 2(3 x-1) & =3 \\ 6 x-1 / 2 & =3 \\ 1 & +2(3 x-1) \end{aligned} \] \[ 16^{x+3}=32^{3 x-2} \]

Ask by Wilson Maxwell. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Solutions to the exponential equations are: 1. \( x = \frac{5}{2} \) 2. \( x = -\frac{3}{2} \) 3. \( x = 4 \) 4. \( x = 2 \)

Solución

Let's solve the exponential equations step by step. ### Problem 1: Solve \( 16^{x-2} = 4 \) 1. **Rewrite the bases**: - We know that \( 16 = 4^2 \), so we can rewrite the equation as: \[ (4^2)^{x-2} = 4 \] This simplifies to: \[ 4^{2(x-2)} = 4^1 \] 2. **Set the exponents equal**: Since the bases are the same, we can set the exponents equal to each other: \[ 2(x-2) = 1 \] 3. **Solve for \( x \)**: \[ 2x - 4 = 1 \\ 2x = 5 \\ x = \frac{5}{2} \] ### Problem 2: Solve \( 8^{2x+3} = 1 \) 1. **Rewrite the equation**: - We know that \( 1 = 8^0 \), so we can rewrite the equation as: \[ 8^{2x+3} = 8^0 \] 2. **Set the exponents equal**: \[ 2x + 3 = 0 \] 3. **Solve for \( x \)**: \[ 2x = -3 \\ x = -\frac{3}{2} \] ### Problem 3: Solve \( 716^{2x+1} = 64^{x+5} \) 1. **Rewrite the bases**: - We know that \( 716 = 2^{6} \) and \( 64 = 2^{6} \), so we can rewrite the equation as: \[ (2^6)^{2x+1} = (2^6)^{x+5} \] This simplifies to: \[ 2^{6(2x+1)} = 2^{6(x+5)} \] 2. **Set the exponents equal**: \[ 6(2x + 1) = 6(x + 5) \] 3. **Solve for \( x \)**: \[ 12x + 6 = 6x + 30 \\ 12x - 6x = 30 - 6 \\ 6x = 24 \\ x = 4 \] ### Problem 4: Solve \( 16^{x+3} = 32^{3x-2} \) 1. **Rewrite the bases**: - We know that \( 16 = 2^4 \) and \( 32 = 2^5 \), so we can rewrite the equation as: \[ (2^4)^{x+3} = (2^5)^{3x-2} \] This simplifies to: \[ 2^{4(x+3)} = 2^{5(3x-2)} \] 2. **Set the exponents equal**: \[ 4(x + 3) = 5(3x - 2) \] 3. **Solve for \( x \)**: \[ 4x + 12 = 15x - 10 \\ 12 + 10 = 15x - 4x \\ 22 = 11x \\ x = 2 \] ### Summary of Solutions: 1. \( x = \frac{5}{2} \) for \( 16^{x-2} = 4 \) 2. \( x = -\frac{3}{2} \) for \( 8^{2x+3} = 1 \) 3. \( x = 4 \) for \( 716^{2x+1} = 64^{x+5} \) 4. \( x = 2 \) for \( 16^{x+3} = 32^{3x-2} \)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Did you know that exponential equations are the backbone of many real-world phenomena? Things like population growth, radioactive decay, and even the way your money grows in a bank account rely on exponential functions! For example, in finance, the formula for compound interest is based on an exponential model, illustrating just how important these equations are in everyday life. When solving exponential equations, it's common to make a couple of mistakes. One common pitfall is forgetting to match the bases correctly, which can lead to confusion. Also, misinterpreting the exponents can cause you to arrive at the wrong solution. Always double-check your steps, and if you find the same base for both sides, go ahead and set the exponents equal to each other!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad