Pregunta
upstudy study bank question image url

Use the first derivative test to determine the location of each local extremum and the value of the function at this extremum. \( f(x)=x^{3} e^{4 x}+2 \)

Ask by Ingram Daniels. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

At x = -3/4, the function has a local minimum value of \( 2 - \frac{27}{64e^3} \).

Solución

We are given   f(x) = x³e^(4x) + 2. Step 1. Find the first derivative. Differentiate f(x) using the product rule on x³e^(4x):   d/dx [x³e^(4x)] = (x³)'e^(4x) + x³(e^(4x))'               = 3x²e^(4x) + x³·4e^(4x)               = e^(4x)[3x² + 4x³]. So,   f'(x) = e^(4x)[3x² + 4x³]        = e^(4x)x²(3 + 4x). Since the constant 2 differentiates to 0, we only have the term from x³e^(4x). Step 2. Determine the critical points. A critical point occurs when f'(x) = 0 or f'(x) is undefined. Here, e^(4x) is never zero, so f'(x) = 0 when:   x²(3 + 4x) = 0. This gives: 1. x² = 0 → x = 0 (a repeated root), 2. 3 + 4x = 0 → x = -3/4. Thus, the candidates for local extrema are x = -3/4 and x = 0. Step 3. Apply the First Derivative Test. We need to examine the sign of f'(x) in intervals determined by these critical points. Note: f'(x) = e^(4x)x²(3 + 4x). Since e^(4x) > 0 and x² ≥ 0 for all x, the sign of f'(x) is determined solely by the factor (3 + 4x). • For x < -3/4:   Choose x = -1.   3 + 4(-1) = 3 - 4 = -1. (Negative)   Thus f'(x) is negative for x < -3/4. • For -3/4 < x < 0:   Choose x = -0.5.   3 + 4(-0.5) = 3 - 2 = 1. (Positive)   Thus f'(x) is positive for -3/4 < x < 0. • For x > 0:   Choose x = 1.   3 + 4(1) = 3 + 4 = 7. (Positive)   Thus f'(x) is positive for x > 0. Analysis of the sign changes: 1. At x = -3/4:   f'(x) changes from negative to positive. Therefore, by the first derivative test, x = -3/4 is a local minimum. 2. At x = 0:   f'(x) is positive just to the left and positive to the right (since x² causes a zero derivative at x = 0 but does not change the sign of (3+4x)). Hence, there is no change in the monotonicity of f(x), and x = 0 is not a local extremum (in fact, it is a stationary inflection point). Step 4. Find the function value at the local minimum. At x = -3/4, compute f(-3/4):   f(-3/4) = (-3/4)³ e^(4(-3/4)) + 2        = (-27/64)e^(-3) + 2. Thus, the local minimum occurs at x = -3/4 with   f(-3/4) = 2 - (27e^(-3))/64. Final Answer: The function f(x) = x³e^(4x) + 2 has a local minimum at x = -3/4, and its value at this point is f(-3/4) = 2 - (27e^(-3))/64. There is no local maximum.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the local extrema of the function \( f(x) = x^3 e^{4x} + 2 \) using the first derivative test, we first need to compute the derivative \( f'(x) \). After applying the product rule and chain rule, we get: \[ f'(x) = 3x^2 e^{4x} + 4x^3 e^{4x} \] Factoring out the common terms, we have: \[ f'(x) = e^{4x}(3x^2 + 4x^3) \] Setting the derivative equal to zero to find critical points: \[ e^{4x} \neq 0 \quad \Rightarrow \quad 3x^2 + 4x^3 = 0 \] Factoring this gives us: \[ x^2(3 + 4x) = 0 \] Thus, \( x = 0 \) and \( x = -\frac{3}{4} \) are critical points. To apply the first derivative test, we can analyze the sign of \( f'(x) \): 1. **For \( x < -\frac{3}{4} \)**: Choose \( x = -1 \): \( f'(-1) = e^{-4}(3 + 4(-1)) = e^{-4}(-1) < 0 \) (Decreasing) 2. **For \( -\frac{3}{4} < x < 0 \)**: Choose \( x = -0.5 \): \( f'(-0.5) = e^{-2}(3 + 4(-0.5)) = e^{-2}(1) > 0 \) (Increasing) 3. **For \( x > 0 \)**: Choose \( x = 1 \): \( f'(1) = e^{4}(3 + 4(1)) = e^{4}(7) > 0 \) (Increasing) From this analysis, we conclude: - Local minimum at \( x = -\frac{3}{4} \) since \( f'(x) \) changes from decreasing to increasing. - No local maximum as \( f'(x) \) is increasing for \( x > 0 \). Now we can plug the critical points back into \( f(x) \) to find the function values at these points. For \( x = -\frac{3}{4} \): \[ f\left(-\frac{3}{4}\right) = \left(-\frac{3}{4}\right)^3 e^{-3} + 2 = -\frac{27}{64} e^{-3} + 2 \] At \( x = 0 \): \[ f(0) = 0 + 2 = 2 \] Thus, the local extremum occurs at \( (-\frac{3}{4}, -\frac{27}{64} e^{-3} + 2) \) which is the local minimum, and at \( x = 0 \), the function value is 2.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad