9. Use arrow notation to describe the translation of point \( P(4,-3) \) to point \( P^{\prime}(7,-11) \). \( \begin{array}{ll}\text { a. }(x, y) \rightarrow(x-3, y+8) & \text { c. }(x, y) \rightarrow(x+3, y+8) \\ \text { b. }(x, y) \rightarrow(x-3, y-8) & \text { d. }(x, y) \rightarrow(x+3, y-8)\end{array} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
To find the translation from point \( P(4,-3) \) to point \( P^{\prime}(7,-11) \), we can calculate the changes in the \( x \) and \( y \) coordinates. The translation from \( x = 4 \) to \( x = 7 \) is a positive change of \( +3 \), while the \( y \) coordinate changes from \( -3 \) to \( -11 \), which is a decrease of \( -8 \). Thus, the correct arrow notation for this translation is expressed as \( (x, y) \rightarrow (x+3, y-8) \). Therefore, the answer is option **d.** In a geometric sense, translations can be visualized like sliding a point across a grid: the point moves right three units and down eight units. Picture a cute character on a map: it zooms to the right and dives down eagerly to settle into its new spot! 😊
