Pregunta
upstudy study bank question image url

Tank A contains 80 gallons of water in which 20 pounds of salt has been dissolved. Tank B contains 30 gallons of water in which 5 pounds of salt has been dissolved. A brine mixture with a concentration of 0.5 pounds of salt per gallon of water is pumped into tank A at the rate of 4 gallons per minute. The well-mixed solution is then pumped from tank A to tank B at the rate of 6 gallons per minute. The solution from tank B is also pumped through another pipe into tank A at the rate of 2 gallons per minute, and the solution from tank B is also pumped out of the system at the rate of 4 gallons per minute. The correct differential equations with initial conditions for the amounts, \( x(t) \) and \( y(t) \), of salt in tanks A and B, respectively, at time \( t \) are Select the correct answer. \( \frac{d x}{d t}=2-\frac{x}{40}+\frac{y}{5}, \frac{d y}{d t}=\frac{x}{40}-\frac{y}{3}, x(0)=20, y(0)=5 \) \( \frac{d x}{d t}=2-\frac{3 x}{40}+\frac{y}{15}, \frac{d y}{d t}=\frac{3 x}{40}-\frac{y}{5}, x(0)=20, y(0)=5 \) \( \frac{d x}{d t}=4-\frac{3 x}{40}+\frac{y}{15}, \frac{d y}{d t}=\frac{3 x}{40}-\frac{y}{5}, x(0)=20, y(0)=5 \) \( \frac{d x}{d t}=4-\frac{x}{40}+\frac{y}{5}, \frac{d y}{d t}=\frac{x}{40}-\frac{y}{3}, x(0)=20, y(0)=5 \) \( \frac{d x}{d t}=2-\frac{3 x}{40}+\frac{y}{5}, \frac{d y}{d t}=\frac{x}{40}-\frac{y}{5}, x(0)=20, y(0)=5 \) \( x \)

Ask by Lee Kirk. in the United States
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The correct differential equations with initial conditions are: \[ \frac{dx}{dt} = 2 - \frac{3x}{40} + \frac{y}{15}, \quad \frac{dy}{dt} = \frac{3x}{40} - \frac{y}{5}, \quad x(0) = 20, \quad y(0) = 5 \] Choice B is the correct answer.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

The Deep Dive

Did you know that the concept of differential equations dates back to the 18th century, when mathematicians like Isaac Newton and Gottfried Wilhelm Leibniz were looking to describe change in dynamic systems? They laid the groundwork for what we now use in everything from physics to economics! Fast forward, these equations enable us to model situations like the mixing of saltwater in tanks, just like in your problem. Solving differential equations can seem daunting, but a few strategies can help. Start by clearly defining your variables and rates of change, just like you've done. A common mistake is to forget to account for the changing concentrations as solutions are mixed. It’s like making a delicious sauce—you need to balance the ingredients! Remember, mixing things up can lead to unexpected flavors, or in this case, unexpected salt concentrations!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad