Pregunta
upstudy study bank question image url

\begin{tabular}{|c|c|} System B \\ \( 6 x-5 y=4 \) \\ \( -6 x+5 y=5 \)\end{tabular}\( \quad \begin{array}{l}\text { The system has no solution. } \\ \text { The system has a unique solution: } \\ (x, y)=(\square, \square) \\ \text { The system has infinitely many solutions. }\end{array} \)

Ask by Hammond Stewart. in the United States
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The system has no solution.

Solución

We are given the system:   6x – 5y = 4   –6x + 5y = 5 Notice that the left-hand sides of the two equations are opposites; if you add them, the variables cancel out:   (6x – 5y) + (–6x + 5y) = 0, but adding the right-hand sides gives:   4 + 5 = 9. This implies 0 = 9, which is a contradiction. Therefore, the system has no solution. The correct answer is:   The system has no solution.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

If we analyze the equations in this system, we can see that they represent two lines in a plane. The first equation, \(6x - 5y = 4\), can be rearranged into y-intercept form, revealing its slope and y-intercept, while the second equation, \(-6x + 5y = 5\), does the same. If the slopes are equal and the y-intercepts differ, these lines are parallel and thus have no solution—meaning they never intersect. To solve this system, we can utilize substitution or elimination. Here, either method could quickly show us that the two equations are indeed inconsistent. A good practice is to add the two equations together to see if they simplify to a contradiction, like \(0 = 9\). This reinforces that there’s no point where both equations hold true simultaneously. Remember, graphs are your friends here!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad