Simplify. \[ \left(\frac{3 y^{5}}{z^{-6}}\right)^{-3} \] Write your answer using only positive exponents.
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
To simplify the expression \(\left(\frac{3 y^{5}}{z^{-6}}\right)^{-3}\), we start by applying the property of exponents that states \((a/b)^{-n} = (b/a)^{n}\). Thus, we can rewrite our expression: \[ \left(\frac{3 y^{5}}{z^{-6}}\right)^{-3} = \left(\frac{z^{-6}}{3 y^{5}}\right)^{3} \] Next, we need to distribute the exponent of 3 to both the numerator and the denominator: \[ = \frac{(z^{-6})^{3}}{(3 y^{5})^{3}} = \frac{z^{-18}}{27 y^{15}} \] Now we rewrite \(z^{-18}\) as \(\frac{1}{z^{18}}\): \[ = \frac{1}{27 y^{15} z^{18}} \] To express the entire expression with only positive exponents, we take the reciprocal of the fraction: \[ = \frac{z^{18}}{27 y^{15}} \] So the final simplified form with only positive exponents is: \[ \frac{z^{18}}{27 y^{15}} \]
