Pregunta
upstudy study bank question image url

4. Find the value of the ratios below in terms of \( \sqrt{2} \) and \( \sqrt{3} \) using the sum or difference of two special angles. \( \begin{array}{llll}4.1 \cos 15^{\circ} & \left.\text { [Hint: } 15^{\circ}=60^{\circ}-45^{\circ}\right] & 4.2 & \sin 75^{\circ} \\ 4.3 \cos 105^{\circ} & 4.4 & \sin 195^{\circ} \\ 4.5 \sin 165^{\circ} & 4.6 & \tan 15^{\circ}\end{array} \)

Ask by Davey Morrison. in South Africa
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Here are the values of the given trigonometric expressions in terms of \( \sqrt{2} \) and \( \sqrt{3} \): 1. \( \cos 15^\circ = \frac{\sqrt{2} + \sqrt{6}}{4} \) 2. \( \sin 75^\circ = \frac{\sqrt{2} + \sqrt{6}}{4} \) 3. \( \cos 105^\circ = \frac{\sqrt{2} - \sqrt{6}}{4} \) 4. \( \sin 195^\circ = \frac{\sqrt{2} - \sqrt{6}}{4} \) 5. \( \sin 165^\circ = \frac{\sqrt{6} - \sqrt{2}}{4} \) 6. \( \tan 15^\circ = 2 - \sqrt{3} \)

Solución

We will use the sum and difference formulas for sine and cosine. Recall:  • cos(A ± B) = cos A · cos B ∓ sin A · sin B  • sin(A ± B) = sin A · cos B ± cos A · sin B Also recall the exact values:  cos 45° = sin 45° = (√2)/2  cos 60° = 1/2    sin 60° = (√3)/2  cos 30° = (√3)/2   sin 30° = 1/2 We now evaluate each expression. ———————————————————— 4.1 cos 15° Using the hint, write 15° as 60° – 45°. Then  cos 15° = cos(60° – 45°)        = cos 60° · cos 45° + sin 60° · sin 45°        = (1/2)·(√2/2) + (√3/2)·(√2/2)        = (√2)/4 + (√6)/4        = (√2 + √6)/4 ———————————————————— 4.2 sin 75° Write 75° as 45° + 30°. Then  sin 75° = sin(45° + 30°)        = sin 45° · cos 30° + cos 45° · sin 30°        = (√2/2)·(√3/2) + (√2/2)·(1/2)        = (√6)/4 + (√2)/4        = (√2 + √6)/4 ———————————————————— 4.3 cos 105° Write 105° as 60° + 45°. Then  cos 105° = cos(60° + 45°)        = cos 60° · cos 45° – sin 60° · sin 45°        = (1/2)·(√2/2) – (√3/2)·(√2/2)        = (√2)/4 – (√6)/4        = (√2 – √6)/4 (Note: Since 105° is in the second quadrant, cos 105° is negative. Here √2 – √6 is negative, as expected.) ———————————————————— 4.4 sin 195° We can express 195° as 180° + 15°. Since sin(180° + θ) = –sin θ, we have  sin 195° = – sin 15° Now calculate sin 15° using 15° = 45° – 30°:  sin 15° = sin(45° – 30°)        = sin 45° · cos 30° – cos 45° · sin 30°        = (√2/2)·(√3/2) – (√2/2)·(1/2)        = (√6)/4 – (√2)/4        = (√6 – √2)/4 Thus,  sin 195° = – (√6 – √2)/4        = (√2 – √6)/4 ———————————————————— 4.5 sin 165° Write 165° as 180° – 15°. Since sin(180° – θ) = sin θ,  sin 165° = sin 15° = (√6 – √2)/4   (as computed above) ———————————————————— 4.6 tan 15° Recall tan 15° = sin 15°/cos 15°. We already computed  sin 15° = (√6 – √2)/4  cos 15° = (√2 + √6)/4 Thus,  tan 15° = [(√6 – √2)/4] ÷ [(√2 + √6)/4]        = (√6 – √2)/(√2 + √6) Another method is to use the tangent difference formula:  tan(45° – 30°) = [tan45 – tan30]⁄[1 + tan45·tan30]        = [1 – (1/√3)]⁄[1 + (1/√3)] Multiply numerator and denominator by √3:        = (√3 – 1)/(√3 + 1) Now rationalize:  (√3 – 1)/(√3 + 1) = [(√3 – 1)²/(3 – 1)] = [ (3 – 2√3 + 1) ]/2 = (4 – 2√3)/2 = 2 – √3 Thus,  tan 15° = 2 – √3 ———————————————————— Final Answers:  4.1 cos 15° = (√2 + √6)/4  4.2 sin 75° = (√2 + √6)/4  4.3 cos 105° = (√2 – √6)/4  4.4 sin 195° = (√2 – √6)/4  4.5 sin 165° = (√6 – √2)/4  4.6 tan 15° = 2 – √3

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the requested trigonometric values involving special angles, we can use the angle subtraction or addition formulas. To solve \( \cos 15^\circ \) which is \( \cos(60^\circ - 45^\circ) \), we use the formula \(\cos(A - B) = \cos A \cos B + \sin A \sin B\). Thus, we have: \[ \cos 15^\circ = \cos 60^\circ \cos 45^\circ + \sin 60^\circ \sin 45^\circ = \left(\frac{1}{2} \cdot \frac{\sqrt{2}}{2}\right) + \left(\frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2}\right) = \frac{\sqrt{2}}{4} + \frac{\sqrt{6}}{4} = \frac{\sqrt{2} + \sqrt{6}}{4}. \] Next, to find \( \sin 75^\circ \), we note that \( 75^\circ = 45^\circ + 30^\circ \). Using the addition formula \(\sin(A + B) = \sin A \cos B + \cos A \sin B\), we calculate: \[ \sin 75^\circ = \sin 45^\circ \cos 30^\circ + \cos 45^\circ \sin 30^\circ = \left(\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2}\right) + \left(\frac{\sqrt{2}}{2} \cdot \frac{1}{2}\right) = \frac{\sqrt{6}}{4} + \frac{\sqrt{2}}{4} = \frac{\sqrt{6} + \sqrt{2}}{4}. \] For \( \cos 105^\circ \), we rewrite it using \( 180^\circ - 75^\circ \): \[ \cos 105^\circ = -\cos 75^\circ = -\left(\frac{\sqrt{6} + \sqrt{2}}{4}\right) = -\frac{\sqrt{6} + \sqrt{2}}{4}. \] Now, \( \sin 195^\circ \) can be expressed as \( \sin(180^\circ + 15^\circ) \): \[ \sin 195^\circ = -\sin 15^\circ = -\left(\frac{\sqrt{6} - \sqrt{2}}{4}\right) = -\frac{\sqrt{6} - \sqrt{2}}{4}. \] For \( \sin 165^\circ \), observe that \( 165^\circ = 180^\circ - 15^\circ \): \[ \sin 165^\circ = \sin 15^\circ = \frac{\sqrt{6} - \sqrt{2}}{4}. \] Finally, for \( \tan 15^\circ \): Using the formula \( \tan A = \frac{\sin A}{\cos A} \): \[ \tan 15^\circ = \frac{\sin 15^\circ}{\cos 15^\circ} = \frac{\frac{\sqrt{6} - \sqrt{2}}{4}}{\frac{\sqrt{6} + \sqrt{2}}{4}} = \frac{\sqrt{6} - \sqrt{2}}{\sqrt{6} + \sqrt{2}}. \] Thus, summarizing the results: \[ \begin{align*} 4.1 & : \cos 15^\circ = \frac{\sqrt{6} + \sqrt{2}}{4}, \\ 4.2 & : \sin 75^\circ = \frac{\sqrt{6} + \sqrt{2}}{4}, \\ 4.3 & : \cos 105^\circ = -\frac{\sqrt{6} + \sqrt{2}}{4}, \\ 4.4 & : \sin 195^\circ = -\frac{\sqrt{6} - \sqrt{2}}{4}, \\ 4.5 & : \sin 165^\circ = \frac{\sqrt{6} - \sqrt{2}}{4}, \\ 4.6 & : \tan 15^\circ = \frac{\sqrt{6} - \sqrt{2}}{\sqrt{6} + \sqrt{2}}. \end{align*} \]

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad