Responder
The solutions are:
- **g)** \(\theta\) cannot be multiples of \(\frac{\pi}{4}\).
- **h)** \(\theta\) cannot be multiples of \(\frac{\pi}{2}\) or \(\frac{2\pi}{3}\).
- **i)** \(x\) cannot be \(\frac{\pi}{3} + \frac{2k\pi}{3}\) for any integer \(k\).
- **j)** All real numbers are solutions for \(\theta\).
Solución
Solve the equation by following steps:
- step0: Solve for \(\theta\):
\(\cos\left(3\theta \right)=4\cos^{3}\left(\theta \right)-3\cos\left(\theta \right)\)
- step1: Rewrite the expression:
\(4\cos^{3}\left(\theta \right)-3\cos\left(\theta \right)=4\cos^{3}\left(\theta \right)-3\cos\left(\theta \right)\)
- step2: The statement is true:
\(\theta \in \mathbb{R}\)
Solve the equation \( \frac{\tan \theta}{\tan 2 \theta}=\frac{\cos ^{2} \theta-\sin ^{2} \theta}{1+\cos 2 \theta} \).
Solve the equation by following steps:
- step0: Solve for \(\theta\):
\(\frac{\tan\left(\theta \right)}{\tan\left(2\theta \right)}=\frac{\cos^{2}\left(\theta \right)-\sin^{2}\left(\theta \right)}{1+\cos\left(2\theta \right)}\)
- step1: Find the domain:
\(\frac{\tan\left(\theta \right)}{\tan\left(2\theta \right)}=\frac{\cos^{2}\left(\theta \right)-\sin^{2}\left(\theta \right)}{1+\cos\left(2\theta \right)},\theta \neq \frac{k\pi }{4},k \in \mathbb{Z}\)
- step2: Calculate:
\(\frac{\tan\left(\theta \right)}{\tan\left(2\theta \right)}=\frac{\cos\left(2\theta \right)}{1+\cos\left(2\theta \right)}\)
- step3: Rewrite the expression:
\(\tan^{-1}\left(2\theta \right)\tan\left(\theta \right)\)
- step4: Express with a positive exponent:
\(\frac{1}{\tan\left(2\theta \right)}\times \tan\left(\theta \right)\)
- step5: Rewrite the expression:
\(\frac{\tan\left(\theta \right)}{\tan\left(2\theta \right)}\)
- step6: Rewrite the expression:
\(\frac{\tan\left(\theta \right)}{\tan\left(2\theta \right)}=\left(1+\cos\left(2\theta \right)\right)^{-1}\cos\left(2\theta \right)\)
- step7: Rewrite the expression:
\(\frac{\tan\left(\theta \right)}{\frac{2\tan\left(\theta \right)}{1-\tan^{2}\left(\theta \right)}}=\left(1+2\cos^{2}\left(\theta \right)-1\right)^{-1}\left(2\cos^{2}\left(\theta \right)-1\right)\)
- step8: Reduce the fraction:
\(\frac{1-\tan^{2}\left(\theta \right)}{2}=\left(1+2\cos^{2}\left(\theta \right)-1\right)^{-1}\left(2\cos^{2}\left(\theta \right)-1\right)\)
- step9: Expand the expression:
\(\frac{1-\tan^{2}\left(\theta \right)}{2}=2\left(1+2\cos^{2}\left(\theta \right)-1\right)^{-1}\cos^{2}\left(\theta \right)-\left(1+2\cos^{2}\left(\theta \right)-1\right)^{-1}\)
- step10: Rewrite the expression:
\(\frac{1-\left(\frac{\sin\left(\theta \right)}{\cos\left(\theta \right)}\right)^{2}}{2}=2\times \frac{1}{1+2\cos^{2}\left(\theta \right)-1}\times \cos^{2}\left(\theta \right)-\frac{1}{1+2\cos^{2}\left(\theta \right)-1}\)
- step11: Simplify:
\(\frac{1-\left(\frac{\sin\left(\theta \right)}{\cos\left(\theta \right)}\right)^{2}}{2}=2\times \frac{1}{1+2\cos^{2}\left(\theta \right)-1}\times \cos^{2}\left(\theta \right)-\frac{1}{2\cos^{2}\left(\theta \right)}\)
- step12: Expand the expression:
\(\frac{1-\frac{\sin^{2}\left(\theta \right)}{\cos^{2}\left(\theta \right)}}{2}=2\times \frac{1}{1+2\cos^{2}\left(\theta \right)-1}\times \cos^{2}\left(\theta \right)-\frac{1}{2\cos^{2}\left(\theta \right)}\)
- step13: Simplify:
\(\frac{1-\frac{\sin^{2}\left(\theta \right)}{\cos^{2}\left(\theta \right)}}{2}=2\left(1+2\cos^{2}\left(\theta \right)-1\right)^{-1}\cos^{2}\left(\theta \right)-\frac{1}{2\cos^{2}\left(\theta \right)}\)
- step14: Calculate:
\(\frac{\cos^{2}\left(\theta \right)-\sin^{2}\left(\theta \right)}{2\cos^{2}\left(\theta \right)}=2\left(1+2\cos^{2}\left(\theta \right)-1\right)^{-1}\cos^{2}\left(\theta \right)-\frac{1}{2\cos^{2}\left(\theta \right)}\)
- step15: Rewrite the expression:
\(\frac{\cos^{2}\left(\theta \right)-\sin^{2}\left(\theta \right)}{2\cos^{2}\left(\theta \right)}=\frac{2\cos^{2}\left(\theta \right)}{1+2\cos^{2}\left(\theta \right)-1}-\frac{1}{2\cos^{2}\left(\theta \right)}\)
- step16: Multiply both sides of the equation by LCD:
\(\frac{\cos^{2}\left(\theta \right)-\sin^{2}\left(\theta \right)}{2\cos^{2}\left(\theta \right)}\times 2\cos^{2}\left(\theta \right)=\left(\frac{2\cos^{2}\left(\theta \right)}{1+2\cos^{2}\left(\theta \right)-1}-\frac{1}{2\cos^{2}\left(\theta \right)}\right)\times 2\cos^{2}\left(\theta \right)\)
- step17: Simplify the equation:
\(\cos^{2}\left(\theta \right)-\sin^{2}\left(\theta \right)=2\cos^{2}\left(\theta \right)-1\)
- step18: Rewrite the expression:
\(2\cos^{2}\left(\theta \right)-1=2\cos^{2}\left(\theta \right)-1\)
- step19: Cancel equal terms:
\(0=0\)
- step20: The statement is true:
\(\theta \in \mathbb{R}\)
- step21: Check if the solution is in the defined range:
\(\theta \in \mathbb{R},\theta \neq \frac{k\pi }{4},k \in \mathbb{Z}\)
- step22: Find the intersection:
\(\theta \neq \frac{k\pi }{4},k \in \mathbb{Z}\)
Solve the equation \( \frac{\cos 2 \theta+\cos \theta+1}{\sin \theta+\sin 2 \theta}=\frac{1}{\tan \theta} \).
Solve the equation by following steps:
- step0: Solve for \(\theta\):
\(\frac{\cos\left(2\theta \right)+\cos\left(\theta \right)+1}{\sin\left(\theta \right)+\sin\left(2\theta \right)}=\frac{1}{\tan\left(\theta \right)}\)
- step1: Find the domain:
\(\frac{\cos\left(2\theta \right)+\cos\left(\theta \right)+1}{\sin\left(\theta \right)+\sin\left(2\theta \right)}=\frac{1}{\tan\left(\theta \right)},\theta \neq \left\{ \begin{array}{l}\frac{2k\pi }{3}\\\frac{k\pi }{2}\end{array}\right.,k \in \mathbb{Z}\)
- step2: Rewrite the expression:
\(\left(\cos\left(2\theta \right)+\cos\left(\theta \right)+1\right)\left(\sin\left(\theta \right)+\sin\left(2\theta \right)\right)^{-1}\)
- step3: Express with a positive exponent:
\(\left(\cos\left(2\theta \right)+\cos\left(\theta \right)+1\right)\times \frac{1}{\sin\left(\theta \right)+\sin\left(2\theta \right)}\)
- step4: Rewrite the expression:
\(\frac{\cos\left(2\theta \right)+\cos\left(\theta \right)+1}{\sin\left(\theta \right)+\sin\left(2\theta \right)}\)
- step5: Rewrite the expression:
\(\frac{\cos\left(2\theta \right)+\cos\left(\theta \right)+1}{\sin\left(\theta \right)+\sin\left(2\theta \right)}=\tan^{-1}\left(\theta \right)\)
- step6: Rewrite the expression:
\(\frac{2\cos^{2}\left(\theta \right)-1+\cos\left(\theta \right)+1}{\sin\left(\theta \right)+2\sin\left(\theta \right)\cos\left(\theta \right)}=\tan^{-1}\left(\theta \right)\)
- step7: Reduce the fraction:
\(\frac{\cos\left(\theta \right)}{\sin\left(\theta \right)}=\tan^{-1}\left(\theta \right)\)
- step8: Rewrite the expression:
\(\frac{\cos\left(\theta \right)}{\sin\left(\theta \right)}=\frac{\cos\left(\theta \right)}{\sin\left(\theta \right)}\)
- step9: The statement is true:
\(\theta \in \mathbb{R}\)
- step10: Check if the solution is in the defined range:
\(\theta \in \mathbb{R},\theta \neq \left\{ \begin{array}{l}\frac{2k\pi }{3}\\\frac{k\pi }{2}\end{array}\right.,k \in \mathbb{Z}\)
- step11: Find the intersection:
\(\theta \neq \left\{ \begin{array}{l}\frac{k\pi }{2}\\\frac{2k\pi }{3}\end{array}\right.,k \in \mathbb{Z}\)
Solve the equation \( \frac{\sin 2 x-\sin x}{\cos 2 x+\cos x}=\frac{\sin x}{\cos x+1} \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(\frac{\sin\left(2x\right)-\sin\left(x\right)}{\cos\left(2x\right)+\cos\left(x\right)}=\frac{\sin\left(x\right)}{\cos\left(x\right)+1}\)
- step1: Find the domain:
\(\frac{\sin\left(2x\right)-\sin\left(x\right)}{\cos\left(2x\right)+\cos\left(x\right)}=\frac{\sin\left(x\right)}{\cos\left(x\right)+1},x\neq \frac{\pi }{3}+\frac{2k\pi }{3},k \in \mathbb{Z}\)
- step2: Rewrite the expression:
\(\left(\sin\left(2x\right)-\sin\left(x\right)\right)\left(\cos\left(2x\right)+\cos\left(x\right)\right)^{-1}\)
- step3: Express with a positive exponent:
\(\left(\sin\left(2x\right)-\sin\left(x\right)\right)\times \frac{1}{\cos\left(2x\right)+\cos\left(x\right)}\)
- step4: Rewrite the expression:
\(\frac{\sin\left(2x\right)-\sin\left(x\right)}{\cos\left(2x\right)+\cos\left(x\right)}\)
- step5: Rewrite the expression:
\(\frac{\sin\left(2x\right)-\sin\left(x\right)}{\cos\left(2x\right)+\cos\left(x\right)}=\left(\cos\left(x\right)+1\right)^{-1}\sin\left(x\right)\)
- step6: Rewrite the expression:
\(\frac{2\sin\left(x\right)\cos\left(x\right)-\sin\left(x\right)}{2\cos^{2}\left(x\right)-1+\cos\left(x\right)}=\left(\cos\left(x\right)+1\right)^{-1}\sin\left(x\right)\)
- step7: Reduce the fraction:
\(\frac{\sin\left(x\right)}{\cos\left(x\right)+1}=\left(\cos\left(x\right)+1\right)^{-1}\sin\left(x\right)\)
- step8: Rewrite the expression:
\(\frac{\sin\left(x\right)}{\cos\left(x\right)+1}=\frac{\sin\left(x\right)}{\cos\left(x\right)+1}\)
- step9: Cross multiply:
\(\sin\left(x\right)\left(\cos\left(x\right)+1\right)=\left(\cos\left(x\right)+1\right)\sin\left(x\right)\)
- step10: Move the expression to the left side:
\(\sin\left(x\right)\left(\cos\left(x\right)+1\right)-\left(\cos\left(x\right)+1\right)\sin\left(x\right)=0\)
- step11: Calculate:
\(0=0\)
- step12: The statement is true:
\(x \in \mathbb{R}\)
- step13: Check if the solution is in the defined range:
\(x \in \mathbb{R},x\neq \frac{\pi }{3}+\frac{2k\pi }{3},k \in \mathbb{Z}\)
- step14: Find the intersection:
\(x\neq \frac{\pi }{3}+\frac{2k\pi }{3},k \in \mathbb{Z}\)
Let's analyze and solve each of the equations step by step.
### g)
The equation is:
\[
\frac{\tan \theta}{\tan 2 \theta} = \frac{\cos^2 \theta - \sin^2 \theta}{1 + \cos 2\theta}
\]
**Solution:**
The solution indicates that:
\[
\theta \neq \frac{k\pi}{4}, k \in \mathbb{Z}
\]
This means that \(\theta\) cannot take values that are multiples of \(\frac{\pi}{4}\).
### h)
The equation is:
\[
\frac{\cos 2\theta + \cos \theta + 1}{\sin \theta + \sin 2\theta} = \frac{1}{\tan \theta}
\]
**Solution:**
The solution indicates that:
\[
\theta \neq \left\{ \frac{k\pi}{2}, \frac{2k\pi}{3} \right., k \in \mathbb{Z}
\]
This means that \(\theta\) cannot take values that are multiples of \(\frac{\pi}{2}\) or \(\frac{2\pi}{3}\).
### i)
The equation is:
\[
\frac{\sin 2x - \sin x}{\cos 2x + \cos x} = \frac{\sin x}{\cos x + 1}
\]
**Solution:**
The solution indicates that:
\[
x \neq \frac{\pi}{3} + \frac{2k\pi}{3}, k \in \mathbb{Z}
\]
This means that \(x\) cannot take values that are of the form \(\frac{\pi}{3} + \frac{2k\pi}{3}\).
### j)
The equation is:
\[
\cos 3\theta = 4\cos^3 \theta - 3\cos \theta
\]
**Solution:**
The solution indicates that:
\[
\theta \in \mathbb{R}
\]
This means that \(\theta\) can take any real value.
### Summary of Results:
- **g)** \(\theta \neq \frac{k\pi}{4}, k \in \mathbb{Z}\)
- **h)** \(\theta \neq \left\{ \frac{k\pi}{2}, \frac{2k\pi}{3} \right., k \in \mathbb{Z}\)
- **i)** \(x \neq \frac{\pi}{3} + \frac{2k\pi}{3}, k \in \mathbb{Z}\)
- **j)** \(\theta \in \mathbb{R}\) (all real solutions)
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución