Pregunta
upstudy study bank question image url

g) \( \frac{\tan \theta}{\tan 2 \theta}=\frac{\cos ^{2} \theta-\sin ^{2} \theta}{1+\cos 2 \theta} \) h) \( \frac{\cos 2 \theta+\cos \theta+1}{\sin \theta+\sin 2 \theta}=\frac{1}{\tan \theta} \) i) \( \frac{\sin 2 x-\sin x}{\cos 2 x+\cos x}=\frac{\sin x}{\cos x+1} \) j) \( \cos 3 \theta=4 \cos ^{3} \theta-3 \cos \theta \)

Ask by Wang Beck. in South Africa
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The solutions are: - **g)** \(\theta\) cannot be multiples of \(\frac{\pi}{4}\). - **h)** \(\theta\) cannot be multiples of \(\frac{\pi}{2}\) or \(\frac{2\pi}{3}\). - **i)** \(x\) cannot be \(\frac{\pi}{3} + \frac{2k\pi}{3}\) for any integer \(k\). - **j)** All real numbers are solutions for \(\theta\).

Solución

Solve the equation by following steps: - step0: Solve for \(\theta\): \(\cos\left(3\theta \right)=4\cos^{3}\left(\theta \right)-3\cos\left(\theta \right)\) - step1: Rewrite the expression: \(4\cos^{3}\left(\theta \right)-3\cos\left(\theta \right)=4\cos^{3}\left(\theta \right)-3\cos\left(\theta \right)\) - step2: The statement is true: \(\theta \in \mathbb{R}\) Solve the equation \( \frac{\tan \theta}{\tan 2 \theta}=\frac{\cos ^{2} \theta-\sin ^{2} \theta}{1+\cos 2 \theta} \). Solve the equation by following steps: - step0: Solve for \(\theta\): \(\frac{\tan\left(\theta \right)}{\tan\left(2\theta \right)}=\frac{\cos^{2}\left(\theta \right)-\sin^{2}\left(\theta \right)}{1+\cos\left(2\theta \right)}\) - step1: Find the domain: \(\frac{\tan\left(\theta \right)}{\tan\left(2\theta \right)}=\frac{\cos^{2}\left(\theta \right)-\sin^{2}\left(\theta \right)}{1+\cos\left(2\theta \right)},\theta \neq \frac{k\pi }{4},k \in \mathbb{Z}\) - step2: Calculate: \(\frac{\tan\left(\theta \right)}{\tan\left(2\theta \right)}=\frac{\cos\left(2\theta \right)}{1+\cos\left(2\theta \right)}\) - step3: Rewrite the expression: \(\tan^{-1}\left(2\theta \right)\tan\left(\theta \right)\) - step4: Express with a positive exponent: \(\frac{1}{\tan\left(2\theta \right)}\times \tan\left(\theta \right)\) - step5: Rewrite the expression: \(\frac{\tan\left(\theta \right)}{\tan\left(2\theta \right)}\) - step6: Rewrite the expression: \(\frac{\tan\left(\theta \right)}{\tan\left(2\theta \right)}=\left(1+\cos\left(2\theta \right)\right)^{-1}\cos\left(2\theta \right)\) - step7: Rewrite the expression: \(\frac{\tan\left(\theta \right)}{\frac{2\tan\left(\theta \right)}{1-\tan^{2}\left(\theta \right)}}=\left(1+2\cos^{2}\left(\theta \right)-1\right)^{-1}\left(2\cos^{2}\left(\theta \right)-1\right)\) - step8: Reduce the fraction: \(\frac{1-\tan^{2}\left(\theta \right)}{2}=\left(1+2\cos^{2}\left(\theta \right)-1\right)^{-1}\left(2\cos^{2}\left(\theta \right)-1\right)\) - step9: Expand the expression: \(\frac{1-\tan^{2}\left(\theta \right)}{2}=2\left(1+2\cos^{2}\left(\theta \right)-1\right)^{-1}\cos^{2}\left(\theta \right)-\left(1+2\cos^{2}\left(\theta \right)-1\right)^{-1}\) - step10: Rewrite the expression: \(\frac{1-\left(\frac{\sin\left(\theta \right)}{\cos\left(\theta \right)}\right)^{2}}{2}=2\times \frac{1}{1+2\cos^{2}\left(\theta \right)-1}\times \cos^{2}\left(\theta \right)-\frac{1}{1+2\cos^{2}\left(\theta \right)-1}\) - step11: Simplify: \(\frac{1-\left(\frac{\sin\left(\theta \right)}{\cos\left(\theta \right)}\right)^{2}}{2}=2\times \frac{1}{1+2\cos^{2}\left(\theta \right)-1}\times \cos^{2}\left(\theta \right)-\frac{1}{2\cos^{2}\left(\theta \right)}\) - step12: Expand the expression: \(\frac{1-\frac{\sin^{2}\left(\theta \right)}{\cos^{2}\left(\theta \right)}}{2}=2\times \frac{1}{1+2\cos^{2}\left(\theta \right)-1}\times \cos^{2}\left(\theta \right)-\frac{1}{2\cos^{2}\left(\theta \right)}\) - step13: Simplify: \(\frac{1-\frac{\sin^{2}\left(\theta \right)}{\cos^{2}\left(\theta \right)}}{2}=2\left(1+2\cos^{2}\left(\theta \right)-1\right)^{-1}\cos^{2}\left(\theta \right)-\frac{1}{2\cos^{2}\left(\theta \right)}\) - step14: Calculate: \(\frac{\cos^{2}\left(\theta \right)-\sin^{2}\left(\theta \right)}{2\cos^{2}\left(\theta \right)}=2\left(1+2\cos^{2}\left(\theta \right)-1\right)^{-1}\cos^{2}\left(\theta \right)-\frac{1}{2\cos^{2}\left(\theta \right)}\) - step15: Rewrite the expression: \(\frac{\cos^{2}\left(\theta \right)-\sin^{2}\left(\theta \right)}{2\cos^{2}\left(\theta \right)}=\frac{2\cos^{2}\left(\theta \right)}{1+2\cos^{2}\left(\theta \right)-1}-\frac{1}{2\cos^{2}\left(\theta \right)}\) - step16: Multiply both sides of the equation by LCD: \(\frac{\cos^{2}\left(\theta \right)-\sin^{2}\left(\theta \right)}{2\cos^{2}\left(\theta \right)}\times 2\cos^{2}\left(\theta \right)=\left(\frac{2\cos^{2}\left(\theta \right)}{1+2\cos^{2}\left(\theta \right)-1}-\frac{1}{2\cos^{2}\left(\theta \right)}\right)\times 2\cos^{2}\left(\theta \right)\) - step17: Simplify the equation: \(\cos^{2}\left(\theta \right)-\sin^{2}\left(\theta \right)=2\cos^{2}\left(\theta \right)-1\) - step18: Rewrite the expression: \(2\cos^{2}\left(\theta \right)-1=2\cos^{2}\left(\theta \right)-1\) - step19: Cancel equal terms: \(0=0\) - step20: The statement is true: \(\theta \in \mathbb{R}\) - step21: Check if the solution is in the defined range: \(\theta \in \mathbb{R},\theta \neq \frac{k\pi }{4},k \in \mathbb{Z}\) - step22: Find the intersection: \(\theta \neq \frac{k\pi }{4},k \in \mathbb{Z}\) Solve the equation \( \frac{\cos 2 \theta+\cos \theta+1}{\sin \theta+\sin 2 \theta}=\frac{1}{\tan \theta} \). Solve the equation by following steps: - step0: Solve for \(\theta\): \(\frac{\cos\left(2\theta \right)+\cos\left(\theta \right)+1}{\sin\left(\theta \right)+\sin\left(2\theta \right)}=\frac{1}{\tan\left(\theta \right)}\) - step1: Find the domain: \(\frac{\cos\left(2\theta \right)+\cos\left(\theta \right)+1}{\sin\left(\theta \right)+\sin\left(2\theta \right)}=\frac{1}{\tan\left(\theta \right)},\theta \neq \left\{ \begin{array}{l}\frac{2k\pi }{3}\\\frac{k\pi }{2}\end{array}\right.,k \in \mathbb{Z}\) - step2: Rewrite the expression: \(\left(\cos\left(2\theta \right)+\cos\left(\theta \right)+1\right)\left(\sin\left(\theta \right)+\sin\left(2\theta \right)\right)^{-1}\) - step3: Express with a positive exponent: \(\left(\cos\left(2\theta \right)+\cos\left(\theta \right)+1\right)\times \frac{1}{\sin\left(\theta \right)+\sin\left(2\theta \right)}\) - step4: Rewrite the expression: \(\frac{\cos\left(2\theta \right)+\cos\left(\theta \right)+1}{\sin\left(\theta \right)+\sin\left(2\theta \right)}\) - step5: Rewrite the expression: \(\frac{\cos\left(2\theta \right)+\cos\left(\theta \right)+1}{\sin\left(\theta \right)+\sin\left(2\theta \right)}=\tan^{-1}\left(\theta \right)\) - step6: Rewrite the expression: \(\frac{2\cos^{2}\left(\theta \right)-1+\cos\left(\theta \right)+1}{\sin\left(\theta \right)+2\sin\left(\theta \right)\cos\left(\theta \right)}=\tan^{-1}\left(\theta \right)\) - step7: Reduce the fraction: \(\frac{\cos\left(\theta \right)}{\sin\left(\theta \right)}=\tan^{-1}\left(\theta \right)\) - step8: Rewrite the expression: \(\frac{\cos\left(\theta \right)}{\sin\left(\theta \right)}=\frac{\cos\left(\theta \right)}{\sin\left(\theta \right)}\) - step9: The statement is true: \(\theta \in \mathbb{R}\) - step10: Check if the solution is in the defined range: \(\theta \in \mathbb{R},\theta \neq \left\{ \begin{array}{l}\frac{2k\pi }{3}\\\frac{k\pi }{2}\end{array}\right.,k \in \mathbb{Z}\) - step11: Find the intersection: \(\theta \neq \left\{ \begin{array}{l}\frac{k\pi }{2}\\\frac{2k\pi }{3}\end{array}\right.,k \in \mathbb{Z}\) Solve the equation \( \frac{\sin 2 x-\sin x}{\cos 2 x+\cos x}=\frac{\sin x}{\cos x+1} \). Solve the equation by following steps: - step0: Solve for \(x\): \(\frac{\sin\left(2x\right)-\sin\left(x\right)}{\cos\left(2x\right)+\cos\left(x\right)}=\frac{\sin\left(x\right)}{\cos\left(x\right)+1}\) - step1: Find the domain: \(\frac{\sin\left(2x\right)-\sin\left(x\right)}{\cos\left(2x\right)+\cos\left(x\right)}=\frac{\sin\left(x\right)}{\cos\left(x\right)+1},x\neq \frac{\pi }{3}+\frac{2k\pi }{3},k \in \mathbb{Z}\) - step2: Rewrite the expression: \(\left(\sin\left(2x\right)-\sin\left(x\right)\right)\left(\cos\left(2x\right)+\cos\left(x\right)\right)^{-1}\) - step3: Express with a positive exponent: \(\left(\sin\left(2x\right)-\sin\left(x\right)\right)\times \frac{1}{\cos\left(2x\right)+\cos\left(x\right)}\) - step4: Rewrite the expression: \(\frac{\sin\left(2x\right)-\sin\left(x\right)}{\cos\left(2x\right)+\cos\left(x\right)}\) - step5: Rewrite the expression: \(\frac{\sin\left(2x\right)-\sin\left(x\right)}{\cos\left(2x\right)+\cos\left(x\right)}=\left(\cos\left(x\right)+1\right)^{-1}\sin\left(x\right)\) - step6: Rewrite the expression: \(\frac{2\sin\left(x\right)\cos\left(x\right)-\sin\left(x\right)}{2\cos^{2}\left(x\right)-1+\cos\left(x\right)}=\left(\cos\left(x\right)+1\right)^{-1}\sin\left(x\right)\) - step7: Reduce the fraction: \(\frac{\sin\left(x\right)}{\cos\left(x\right)+1}=\left(\cos\left(x\right)+1\right)^{-1}\sin\left(x\right)\) - step8: Rewrite the expression: \(\frac{\sin\left(x\right)}{\cos\left(x\right)+1}=\frac{\sin\left(x\right)}{\cos\left(x\right)+1}\) - step9: Cross multiply: \(\sin\left(x\right)\left(\cos\left(x\right)+1\right)=\left(\cos\left(x\right)+1\right)\sin\left(x\right)\) - step10: Move the expression to the left side: \(\sin\left(x\right)\left(\cos\left(x\right)+1\right)-\left(\cos\left(x\right)+1\right)\sin\left(x\right)=0\) - step11: Calculate: \(0=0\) - step12: The statement is true: \(x \in \mathbb{R}\) - step13: Check if the solution is in the defined range: \(x \in \mathbb{R},x\neq \frac{\pi }{3}+\frac{2k\pi }{3},k \in \mathbb{Z}\) - step14: Find the intersection: \(x\neq \frac{\pi }{3}+\frac{2k\pi }{3},k \in \mathbb{Z}\) Let's analyze and solve each of the equations step by step. ### g) The equation is: \[ \frac{\tan \theta}{\tan 2 \theta} = \frac{\cos^2 \theta - \sin^2 \theta}{1 + \cos 2\theta} \] **Solution:** The solution indicates that: \[ \theta \neq \frac{k\pi}{4}, k \in \mathbb{Z} \] This means that \(\theta\) cannot take values that are multiples of \(\frac{\pi}{4}\). ### h) The equation is: \[ \frac{\cos 2\theta + \cos \theta + 1}{\sin \theta + \sin 2\theta} = \frac{1}{\tan \theta} \] **Solution:** The solution indicates that: \[ \theta \neq \left\{ \frac{k\pi}{2}, \frac{2k\pi}{3} \right., k \in \mathbb{Z} \] This means that \(\theta\) cannot take values that are multiples of \(\frac{\pi}{2}\) or \(\frac{2\pi}{3}\). ### i) The equation is: \[ \frac{\sin 2x - \sin x}{\cos 2x + \cos x} = \frac{\sin x}{\cos x + 1} \] **Solution:** The solution indicates that: \[ x \neq \frac{\pi}{3} + \frac{2k\pi}{3}, k \in \mathbb{Z} \] This means that \(x\) cannot take values that are of the form \(\frac{\pi}{3} + \frac{2k\pi}{3}\). ### j) The equation is: \[ \cos 3\theta = 4\cos^3 \theta - 3\cos \theta \] **Solution:** The solution indicates that: \[ \theta \in \mathbb{R} \] This means that \(\theta\) can take any real value. ### Summary of Results: - **g)** \(\theta \neq \frac{k\pi}{4}, k \in \mathbb{Z}\) - **h)** \(\theta \neq \left\{ \frac{k\pi}{2}, \frac{2k\pi}{3} \right., k \in \mathbb{Z}\) - **i)** \(x \neq \frac{\pi}{3} + \frac{2k\pi}{3}, k \in \mathbb{Z}\) - **j)** \(\theta \in \mathbb{R}\) (all real solutions)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

The given equations involve trigonometric identities that can be traced back to the work of ancient Greek mathematicians. For instance, the identity \( \cos 3\theta = 4 \cos^3 \theta - 3 \cos \theta \) is a specific case derived from their exploration of angles and periodic functions. These concepts were crucial not only for astronomy but also for understanding harmonic motion in their time—a blend of science and art! In practical terms, the trigonometric identities play a key role in fields such as engineering and physics. For example, the identity relating \( \tan \theta \) and \( \tan 2\theta \) helps simplify complex problems involving wave functions and oscillations. By transforming tangential relationships, engineers can analyze forces, vibrations, and other phenomena with greater ease, making these identities invaluable tools in real-world applications!

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad